
Math 269: Homework.

The problem numbers refer to problems from your text book. I will often assign
problems which are not in the text book. Keep in mind that there is a firm ‘no late
homework’ policy.

Assignment 1: Assigned Fri 01/20. Due Wed 01/25

1. Sec. 1.4. 5, 10.

2. If x, y ∈ Rn, show that ||x| − |y|| 6 |x− y|.

3. If A = (ai,j) is an m× n matrix, define |A| =
(∑m

i=1

∑n
j=1 a

2
i,j

)1/2
.

(a) If A is a m× n matrix, and b ∈ Rn, then show that |Ab| 6 |A||b|.
(b) More generally, if B is a n× p matrix, show that |AB| 6 |A||B|.

4. If x, y, z ∈ R3, show that x · (y× z) = det(x, y, z). Here det(x, y, z) denotes the
determinant of the matrix with columns x, y, and z respectively. [In your recita-

tion you’ll probably see that |x · (y × z)| is the volume of the parallelepiped with sides x, y, z.

This is just geometric intuition I’d like you to know. Verify the above identity algebraically,

without any geometry.]

5. Sec. 1.5. 5

6. Show that an infinite intersection of open sets is not necessarily open. [Taking

complements, you’ll see that an infinite union of closed sets need not be closed.]

? 7. (Hard, optional, challenge.) If S ⊆ R is both open and closed, show that S = ∅
or S = R. [You’ll need the notion of infimum or supremum. So if you haven’t heard those

words, look them up before trying this problem.]

Assignment 2: Assigned Wed 01/25. Due Wed 02/01

1. Here are two possible definitions of the boundary of a set.

(a) (Class) ∂S = S − S̊.

(b) (Text book) ∂S = {x ∈ Rn | ∀r > 0, B(x, r) ∩ S 6= ∅, & B(x, r) ∩ Sc 6= ∅}.
Show that these are equivalent.

2. Show that ∂S is closed, directly using the text-book definition of boundary.
[We did in class using the other definition. Since the two definitions are equivalent, you know

that ∂S is certainly closed. Doing it directly using the other definition is mainly practice in

using the definition.]

3. Let (an) be a sequence in Rd, (cn) a sequence in R. Suppose (an) → α, and
(cn)→ γ with γ 6= 0. Show that ( 1

cn
an)→ 1

γα.

4. (a) If f is continuous at a, and (an)→ a, show that (f(an))→ f(a).

(b) If for every sequence (an)→ a, we have (f(an))→ f(a) then show that f
is continuous at a.

5. Sec. 1.5. 13, 14, 18, 23.

Assignment 3: Assigned Wed 02/01. Due Wed 02/08

1. Instead of considering iterated limits, we could consider limits of a function
along arbitrary lines approaching the point in question. It has pitfalls similar
to iterated limits.

(a) Let f : Rd → R, and suppose lim
x→a

f(x) = l. Let v ∈ Rd be non-zero. Then

show that lim
t→0

f(a+ tv) exists and equals l. [This is called a directional limit.]

Conversely, suppose for all v ∈ R2, nonzero, the limits lim
t→0

f(a + tv) all exist

and are equal. It turns out that lim
x→a

f(x) need not exist. Here’s an example.

(b) Define the function f : R2 → R by f(x, y) = 1 if |y| > x2 or if y = 0,
and f(x, y) = 0 otherwise. For every v ∈ R2 non-zero, show that the all
directional limits of f at at the point (0, 0) exist and are equal. Show
however that the (full) limit lim

(x,y)→(0,0)
f(x, y) does not exist.

[Iterated and directional limits give easy tests to check whether (full) limits exist. If the

iterated limits are not equal, or if two directional limits are not equal, then the (full) limit

can not exist. But be warned: if all directional limits are equal, and/or if the iterated limits

are equal, it need not mean the full limit exists!]

2. Sec. 1.5. 21, 24, 10.

3. If the series
∑
|an| is convergent, we know that that the series

∑
an is conver-

gent. Show that |
∑∞

1 an| 6
∑∞

1 |an|.
4. Let A be an n × n matrix. We know if |A| < 1, then the series

∑
An is con-

vergent. For 1 × 1 matrices (a.k.a real numbers), the converse is also true.
However, for n × n matrices there are plenty of examples where |A| > 1 and
the geometric series

∑
An is convergent. For any R ∈ R, find a 2× 2 matrix A

such that |A| > R and
∑∞

1 An is convergent.
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