Supplement: Continuity of composition.

Proposition 1. Let $D_{1} \subseteq \mathbb{R}^{m}$ be open, $D_{2} \subseteq \mathbb{R}^{m^{\prime}}$ be open, $f: D_{1} \rightarrow \mathbb{R}^{n}$, and $g: D_{2} \rightarrow \mathbb{R}^{m}$ be two functions. Suppose $a \in D_{2}$ and g is continuous at a. Suppose further $g(a) \in D_{1}$, and f is continuous at $g(a)$. Then $f \circ g$ is continuous at a.

Let's do some scratch. Our task is to make $f(g(x))$ close to $f(g(a))$ by making x close enough to a. Let $y=g(x)$. If y is close enough to $g(a)$, then continuity of f guarantees that $f(y)$ will be close to $f(g(a))$, as desired. However, since g is continuous at a, making x close enough to a will ensure $g(x)$ is close to $g(a)$! Combining these two ideas should give the proof.

Proof. Let $\varepsilon>0$ be arbitrary. First, since f is continuous at $g(a)$, we know

$$
\begin{equation*}
\exists \delta_{1}>0 \text { э }|y-g(a)|<\delta_{1} \Longrightarrow|f(y)-f(g(a))|<\varepsilon . \tag{1}
\end{equation*}
$$

Now, since g is continuous at a, we know

$$
\begin{equation*}
\exists \delta_{2}>0 \ni|g(x)-g(a)|<\delta_{2} \Longrightarrow|f(g(x))-f(g(a))|<\boldsymbol{\delta}_{\mathbf{1}} . \tag{2}
\end{equation*}
$$

Notice equation (2) has a big bold δ_{1} on the right, and not some function of ε, as is usually the case. It's not a typo. It's the correct logical step, as explained in the paragraph preceding this proof.

Now, choose $\delta=\delta_{2}$. Then

$$
\begin{aligned}
|x-a|<\delta & \Longrightarrow|g(x)-g(a)|<\delta_{1} & & {[\text { by equation (2)], }} \\
& \Longrightarrow|f(g(x))-f(g(a))|<\varepsilon & & {[\text { by equation (1)] },}
\end{aligned}
$$

finishing the proof!
As mentioned in class, the point of this proposition is that continuous functions can be passed in and out of limits. Namely:

$$
\left.\begin{array}{l}
f \text { continuous at } l \\
\text { and } \lim _{x \rightarrow a} g(x)=l
\end{array}\right\} \Longrightarrow \lim _{x \rightarrow a} f(g(x))=f(l)=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

