Math 880 Midterm.

October 13, 2010
This is a closed book test. You have 90 minutes. You may (or may not) find the questions getting progressively harder. You may use without proof any result from class and homework, unless any of the following hold:

- You are explicitly instructed otherwise.
- The proof of the result you want to use relies on the question you're asked.
- The result you want to use is the question you're asked to solve.
- The result you want to use has not (yet) been proved in class.

In this exam, Ω always denotes a probability space, with measure P. Brownian motion will usually be denoted by W or B, and the underlying filtration (if not explicitly mentioned) is denoted by $\mathcal{F}=\left\{\mathcal{F}_{t}\right\}_{t \geqslant 0}$, and is always assumed to satisfy the usual conditions.

1. Let τ be a stopping time. Are the random times $\frac{\tau}{2}$ and $\frac{3 \tau}{2}$ necessarily stopping times? Prove, or provide a counter example.
2. Suppose X is process such that $E\left|X_{t}-X_{s}\right| \leqslant|t-s|^{3}$. Must X have a constant in time modification? Prove, or provide a counter example.
3. Let B be a standard 1D Brownian starting at 0 , and let $\tau=\sup \left\{t \leqslant 1 \mid B_{t}=0\right\}$. Is τ a stopping time? Prove or disprove.
4. Let $0 \leqslant s<t$. Show that (almost surely) Brownian motion is not monotone on the time interval (s, t).
5. Let B be a (standard 1D) Brownian motion and τ a stopping time. Define the process X by $X_{t}=$ $2 B_{\tau \wedge t}-B_{t}$. Compute $\varphi(\xi, t)=E^{0} e^{i \xi X_{t}}$ explicitly as a function of ξ and t.
