Stochastic Calculus Lecture schedule.

Gautam Iyer, Fall 2010

L1, Mon 8/23.• Stochastic processes
$\begin{array}{llllllllllllllllllllllllllllllllllll$
L2, Wed 8/25.Continuous time martingales- Doob's Martingale inequalities- Existence of RCLL modifications (no proof).Submartingale convergenceL3, Mon 8/30 Optional sampling Local martingales.L4, Wed 9/1 Completeness of M^2 , M_c^2 Quadratic variation.* Definition and proof of existenceL5, Wed 9/8.* $M^2 - \langle M \rangle \in \mathcal{M}_{c,loc}$ for all $M \in \mathcal{M}_{c,loc}$.* Joint quadratic variation.L6, Fri 9/10.• Brownian Motion- Construction of Brownian Motion* Daniel Kolmogorov Centsov theorem* Brownian families, Wiener Space, Wiener measureL8, Wed 9/15.• Markov processes and families* Strong Markov property of Brownian Motion* Equivalent formulations of the Markov propertyL9, Mon 9/27.* Time shiftsStrong Markov property for Brownian motion* Bumenthal and Kolmogorov 0-1 laws.L11, Mon 10/4 Sample path properties* Zero set of Brownian motion* L12, Wed 10/6 Ved 10/6 Output- L12, Wed 10/6.
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
L3, Mon 8/30 Optional sampling. - Local martingales.L4, Wed 9/1 Completeness of \mathcal{M}^2 , \mathcal{M}^2_c . - Quadratic variation. * Definition and proof of existenceL5, Wed 9/8.* $M^2 - \langle M \rangle \in \mathcal{M}_{c,loc}$ for all $M \in \mathcal{M}_{c,loc}$. * Joint quadratic variation.L6, Fri 9/10.• Brownian Motion • Daniel Kolmogorov consistency theorem * Brownian families, Wiener Space, Wiener measureL7, Mon 9/13.* Kolmogorov Čentsov theorem * Brownian families * Markov processes and families * Markov property of Brownian Motion * Equivalent formulations of the Markov propertyL9, Mon 9/27.* Time shifts • Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping timesL10, Wed 9/29.* Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws.L11, Mon 10/4 Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * The running maximum of Brownian motion * The varies degarithmL12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
L4, Wed 9/1 Completeness of \mathcal{M}^2 , \mathcal{M}^2_c Quadratic variation.* Definition and proof of existenceL5, Wed 9/8.* $\mathcal{M}^2 - \langle M \rangle \in \mathcal{M}_{c, \text{loc}}$ for all $M \in \mathcal{M}_{c, \text{loc}}$.* Joint quadratic variation.* Brownian MotionL6, Fri 9/10.• Brownian Motion* Daniel Kolmogorov consistency theoremL7, Mon 9/13.* Kolmogorov Čentsov theorem* Brownian families, Wiener Space, Wiener measureL8, Wed 9/15 Markov processes and families* Markov property of Brownian Motion* Equivalent formulations of the Markov propertyL9, Mon 9/27.* Time shifts- Strong Markov property for Brownian motion* Restarting Brownian motion at stopping timesL10, Wed 9/29.* Computation of passage time densities* Blumenthal and Kolmogorov 0-1 laws.L11, Mon 10/4 Sample path properties* Zero set of Brownian motion* Law of iterated logarithmL12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
* Definition and proof of existence L5, Wed 9/8. $M^2 - \langle M \rangle \in \mathcal{M}_{c, loc}$ for all $M \in \mathcal{M}_{c, loc}$. * Joint quadratic variation. L6, Fri 9/10. • Brownian Motion - Construction of Brownian Motion * Daniel Kolmogorov consistency theorem * Kolmogorov Čentsov theorem * Brownian families, Wiener Space, Wiener measure L8, Wed 9/15. - Markov processes and families * Markov property of Brownian Motion * Equivalent formulations of the Markov property L9, Mon 9/27. - Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29. L11, Mon 10/4. - Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. - Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
L5, Wed 9/8. $* M^2 - \langle M \rangle \in \dot{\mathcal{M}}_{c,loc}$ for all $M \in \mathcal{M}_{c,loc}$. * Joint quadratic variation.L6, Fri 9/10.• Brownian Motion - Construction of Brownian Motion * Daniel Kolmogorov consistency theorem * Baniel Kolmogorov Centsov theorem * Brownian families, Wiener Space, Wiener measure L8, Wed 9/15.L8, Wed 9/15 Markov property of Brownian Motion * Markov property of Brownian Motion * Equivalent formulations of the Markov property L9, Mon 9/27.L9, Mon 9/27.* Time shifts - Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29.L10, Wed 9/29.* Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws.L11, Mon 10/4 Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithmL12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Joint quadratic variation. L6, Fri 9/10. • Brownian Motion Construction of Brownian Motion Daniel Kolmogorov consistency theorem * Daniel Kolmogorov Čentsov theorem * Kolmogorov Čentsov theorem * Brownian families, Wiener Space, Wiener measure L8, Wed 9/15. Markov processes and families * Markov property of Brownian Motion * Equivalent formulations of the Markov property L9, Mon 9/27. * Time shifts Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29. * Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6.
L6, Fri 9/10. • Brownian Motion - Construction of Brownian Motion * Daniel Kolmogorov consistency theorem L7, Mon 9/13. * Kolmogorov Čentsov theorem L8, Wed 9/15. - Markov processes and families L9, Mon 9/27. - Markov processes and families L10, Wed 9/29. * Computation of passage time densities L11, Mon 10/4. - Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * L12, Wed 10/6. - Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 Construction of Brownian Motion Daniel Kolmogorov consistency theorem Daniel Kolmogorov Čentsov theorem Kolmogorov Čentsov theorem Brownian families, Wiener Space, Wiener measure L8, Wed 9/15 Markov processes and families Markov property of Brownian Motion Equivalent formulations of the Markov property J. Mon 9/27. Time shifts Strong Markov processes and families Strong Markov property for Brownian motion Restarting Brownian motion at stopping times L10, Wed 9/29. Computation of passage time densities Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4 Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 k Daniel Kolmogorov consistency theorem k Kolmogorov Čentsov theorem k Kolmogorov Čentsov theorem k Brownian families, Wiener Space, Wiener measure L8, Wed 9/15. Markov processes and families Markov property of Brownian Motion Equivalent formulations of the Markov property L9, Mon 9/27. Strong Markov processes and families Strong Markov property for Brownian motion Restarting Brownian motion at stopping times L10, Wed 9/29. Computation of passage time densities Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 L7, Mon 9/13. Kolmogorov Čentsov theorem Brownian families, Wiener Space, Wiener measure L8, Wed 9/15. Markov processes and families Markov property of Brownian Motion Equivalent formulations of the Markov property L9, Mon 9/27. Strong Markov processes and families Strong Markov property for Brownian motion Restarting Brownian motion at stopping times L10, Wed 9/29. Computation of passage time densities Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Brownian families, Wiener Space, Wiener measure L8, Wed 9/15. Markov processes and families Markov property of Brownian Motion Equivalent formulations of the Markov property X Time shifts Strong Markov processes and families Strong Markov property for Brownian motion Restarting Brownian motion at stopping times L10, Wed 9/29. Computation of passage time densities Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 L8, Wed 9/15. Markov processes and families Markov property of Brownian Motion Equivalent formulations of the Markov property Time shifts Strong Markov processes and families Strong Markov property for Brownian motion Restarting Brownian motion at stopping times L10, Wed 9/29. Computation of passage time densities Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Markov property of Brownian Motion * Equivalent formulations of the Markov property * Time shifts Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29. * Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Equivalent formulations of the Markov property * Time shifts Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29. * Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 L9, Mon 9/27. * Time shifts Strong Markov processes and families * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29. * Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 Strong Markov processes and families Strong Markov property for Brownian motion Restarting Brownian motion at stopping times L10, Wed 9/29. * Computation of passage time densities Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4 Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Strong Markov property for Brownian motion * Restarting Brownian motion at stopping times L10, Wed 9/29. * Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. - Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. - Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Restarting Brownian motion at stopping times * Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4. - Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. - Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
L10, Wed 9/29.* Computation of passage time densities * Blumenthal and Kolmogorov 0-1 laws.L11, Mon 10/4 Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithmL12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Blumenthal and Kolmogorov 0-1 laws. L11, Mon 10/4 Sample path properties Zero set of Brownian motion The running maximum of Brownian motion Law of iterated logarithm L12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 L11, Mon 10/4 Sample path properties * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6 Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * Zero set of Brownian motion * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. - Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 * The running maximum of Brownian motion * Law of iterated logarithm L12, Wed 10/6. - Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
 <i>L12, Wed 10/6.</i> <i>*</i> Law of iterated logarithm Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
L12, Wed 10/6. – Weak convergence and Donsker's invariance principle. (Omitted proof of tightness)
tightness)
– Construction of the Itô integral.
* Itô isometry.
* Elementary properties.
L14, Mon 10/18. * Approximation by simple functions. (Omitted the proof when $\langle M \rangle$ is not
absolutely continuous)
* Kunita Watanabi inequality.
L15, Wed 10/20. * Joint quadratic variation of Itô integrals
* Martingale characterization.
* Integration with respect to local martingales.
L16, Mon 10/25. – The Itô formula.
L17, Wed $10/27$. – Stratonovich integrals.
– Lévy's characterization of Brownian Motion.

L18, Mon 11/1.	• Martingale representation theorem.
L19, Wed 11/3.	• The Girsanov Theorem
	– Statement and proof.
L20, Mon 11/8.	– Passage times of Brownian motion with a drift.
	 Regularity of exponential martingales.
L21, Wed 11/10.	• Stochastic Differential equations
	– Strong solutions.
	* Existence and uniqueness.
L22, Mon 11/15.	– Weak solutions.
	* Tanaka's example.
	* Existence.
L23, Wed 11/17.	• Diffusions
	 Markov and Strong Markov properties.
L24, Mon 11/22.	– Dynkin's formula, generators.
,	– Recurrence of Brownian Motion.
T 0 H 1 F 1 / 0 0	
L25, Mon 11/29.	 Kolmogorov backward equations
L25, Mon 11/29.	
	- Time inhomogeneous diffusions
L25, Mon 11/29. L26, Wed 12/1.	Time inhomogeneous diffusionsKolmogorov forward equations.
	- Time inhomogeneous diffusions