Homework Assignment 3

Assigned Wed 10/06. Due Wed 10/27.

Questions 2(a) and 3(c) are a little harder, and you can probably find a hint an almost any book on Stochastic Calculus, as they're standard results. However I recommend you try them on your own first.

- 1. Let \mathcal{F} denote the Borel σ -algebra on the Wiener space $C[0,\infty)^d$, and let P be the Wiener measure. As we did in class, for any $x \in \mathbb{R}$, $F \in \mathcal{F}$, define $P^x(F) = P(F - x)$. Show that the function $x \mapsto P^x(F)$ is Borel measurable.
- 2. For any $\lambda > 0$, we define the *Poisson process with intensity* λ as follows. Let τ_i be a sequence of i.i.d exponential random variables with parameter λ (i.e. $P(\tau_i \in dt) = \frac{1}{\lambda}e^{-\lambda t}$). Let $\sigma_n = \sum_{i=1}^{n} \tau_i$. The intuition is that τ_i is the time at which the *i*th customer arrives, and σ_n is the time it takes for the first *n* customers to arrive.

Now we define $N_t = \max\{n \in \mathbb{N} \mid \sigma_n \leq t\}$ to be the number of customers who've arrived up to time t. This is called the Poisson process with intensity λ .

- (a) Show that $N_t N_s$ is an integer valued Poisson random variable with parameter $\lambda(t-s)$. Further, show $N_t - N_s$ is independent of \mathcal{F}_s^N .
- (b) Show that $\langle N \rangle_t = \lambda t$ almost surely.
- (c) Show that N is a Markov process.
- 3. (a) Let B be a Brownian motion. Find a Borel function f such that the process $\{f(B_t)\}_{t\geq 0}$ is not a Markov process.
 - (b) Show that the process $X_t = |B_t|$ is a Markov process. Further show that the transition density $p_+(h, x, y) \stackrel{\text{def}}{=} P^0(X_{t+h} \in dy | X_t = x) = p(h, x, y) + p(h, x, -y)$, where p is the transition density of Brownian motion, and $x, y \ge 0$.
 - (c) Let $Y_t = M_t B_t$, where $M_t = \sup_{s \leq t} B_s$. Show that Y is a Markov process, with the same transition density as X. Conclude that X and Y have the same finite dimensional distributions.