Homework Assignment 2

Assigned Thu 09/16. Due Wed 10/06.

- 1. Say X_t is a process with independent increments. Show that if s < t, $X_t X_s$ is independent of \mathcal{F}_s^X . [Recall $\mathcal{F}_t^X = \sigma(\bigcup_{s \leq t} \sigma(X_s))$. Also, X has independent increments means that for any finite sequence $0 \leq t_0 < t_1 \cdots < t_n$, the family of random variables $\{X_{t_j} - X_{t_{j-1}} \mid 1 \leq j \leq n\}$ is independent.]
- 2. Let $B = \{(B^{(1)}, \ldots, B^{(d)}), \mathcal{F}_t\}$ be a *d* dimensional Brownian motion starting at 0. Show that each coordinate $B^{(i)} \in \mathcal{M}_c^2$, and that $\langle B^{(i)}, B^{(j)} \rangle_t = \delta_{ij} t$.
- 3. Let B be a standard 1D Brownian motion. Show that for $\alpha > \frac{1}{2}$, $\lim_{t \to \infty} \frac{|B_t|}{t^{\alpha}} = 0$ almost surely. [Don't use the law of iterated logarithm, as the proof relies on this problem.]
- 4. Let B be a standard 1D Brownian motion. Show that each of the following are also standard 1D Brownian motions:
 - (a) $\{-B_t\}_{t \ge 0}$
 - (b) $\{\frac{1}{\sqrt{\lambda}}B_{\lambda t}\}_{t \ge 0}$, for any $\lambda > 0$.
 - (c) $W_t = tB_{\frac{1}{t}}$ for t > 0, and $W_0 = 0$.
 - (d) $\{B_{s+t} B_s\}_{t \ge 0}$ for any fixed $s \ge 0$.
- 5. Let B be a standard 1D Brownian motion. Show that for any $\alpha > \frac{1}{2}, t \ge 0$,

$$\limsup_{h \to 0^+} \frac{|B_{t+h} - B_t|}{h^{\alpha}} = \infty,$$

almost surely. [Note that from the previous two problems, you immediately have for $\alpha < \frac{1}{2}$, $\lim_{h \to 0+} \frac{|B_{t+h} - B_t|}{h^{\alpha}} = 0$ almost surely.]