Math 341 Syllabus and Lecture schedule. Li0, Wed oz/02.
Gautam Iyer, Fall 2010

* Any vector can be uniquely expressed as a linear combination of basis vectors.
- Error correcting codes.
* $F=\{0,1\}$, choose $a, b, c \in F$.
* Pick $\left\{v_{1}, v_{2}, v_{3}\right\} \in F^{n}$, and transmit the message $u=$ $a v_{1}+b v_{2}+c v_{3}$.
* Let $C=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$. If $e_{i} \notin C$ for all i, then one error can be detected.
* If $e_{i}+e_{j} \notin C$ for $i \neq j$, then one error can be corrected.
* E.g. $n=6, v_{1}=e_{1}+e_{2}+e_{3}, v_{2}=e_{1}+e_{4}+e_{5}$, $v_{3}=e_{1}+e_{3}+e_{4}+e_{6}$. Allows you to transmit a 3 bit message using 6 bits, such that an error of at most 1 bit can be corrected!
$-\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)$.
- Linear transformations
- Definition, and some examples.
- Kernel, image. Proof that $\operatorname{ker}(T)$ and $\operatorname{im}(T)$ are subspaces.
- $\mathcal{L}(U, V)$, and proof that it is a vector space.
* Closure of $\mathcal{L}(U, U)$ under composition.
* Associativity, non-commutativity, Identity.
* $T \in \mathcal{L}(U, V)$ bijective $\Longrightarrow T^{-1} \in \mathcal{L}(V, U)$.
* $T \in \mathcal{L}(U, V)$ injective $\Longleftrightarrow \operatorname{ker}(T)=\{0\}$.
- Rank Nullity: $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))=\operatorname{dim}(\operatorname{domain}(T))$.
* If $T \in \mathcal{L}(U, V)$, and $\operatorname{dim}(U)<\operatorname{dim}(V)<\infty$ then T is not surjective.
* If $T \in \mathcal{L}(U, V)$, and $\infty>\operatorname{dim}(U)>\operatorname{dim}(V)$ then T is not injective.
* Any system of linear homogeneous equations with more variables than equations has a non-zero solution.
* Isomorphisms.
- Matrices
* Linear transformations can be uniquely determined from values on basis vectors.
* Define matrix representations of vectors and linear transformations.
* Compute $\mathcal{M}_{C}(T u)$ in terms of $\mathcal{M}_{B, C}(u)$ and $\mathcal{M}_{B}(u)$.
* Define $\operatorname{Mat}(n, m, F)$
* Motivate the definition of matrix multiplication by composition of linear transformations.
- Linear equations
- Elementary row operations don't change solutions of $A x=b$.
- Row reduced echelon matrices.
* Pivots, free variables, and 'reading off' solutions to $A x=b$. L30, Mon 04/04.
* Row reduction to row reduced echelon form.
- Matrix inverses: If $\operatorname{rref}(A \mid I)=(I \mid B)$ then $B=A^{-1}$.

L20, Mon 02/28. • Polynomials

- Define $P_{F}(x)$ to be the ring of formal polynomials.
- Degree, addition, multiplication.
- For $p, q \in P_{F}(x)$, with $q \neq 0, \exists s, r \in P_{F}(x)$ such that $p=q s+r$ and $\operatorname{deg}(r)<\operatorname{deg}(q)$.
L21, Wed 03/02. - The evaluation map E_{α}, roots, divisibility
- If α is a root of f then $(x-\alpha) \mid f$
- Fundamental theorem of Algebra
- If $f \in P_{\mathbb{C}}(x)$ is non-constant, then f factors completely as a product of linear polynomials.

L22, Mon 03/14. • Eigenvalues

- Definition
- Eigenvalues of diagonal matrices.
- Eigenvectors corresponding to distinct eigenvalues are linearly independent.
- If $\operatorname{dim}(V)<\infty$, then λ an eigenvalue of $T \Longleftrightarrow T-\lambda I$ is not invertible.
L23, Wed 03/16. - If $F=\mathbb{C}, \operatorname{dim}(V)<\infty$, then every linear transformation from V to V has an eigenvalue.
- Explicitly computing eigenvalues of 2×2 matrices.

L24, Fri 03/18. - Tournament ranking / page rank.
L25, Mon 03/21. - Diagonalizable transformations, matrices.

* Computing powers of diagonalizable matrices.
* Computing Fibonacci numbers as an application.

L26, Fri 03/25. - Basis change: If B, C are two basis of V then

* For $x \in V, \mathcal{M}_{C}(x)=\mathcal{M}_{C}(B) \mathcal{M}_{B}(x)$.
* $\mathcal{M}_{C}(T)=P^{-1} \mathcal{M}_{B}(T) P$, where $P=\mathcal{M}_{B}(C)$.

L27, Mon 03/28. - Upper triangular matrices.

* If $F=C$, and $\operatorname{dim}(V)<\infty$, then any linear transformation has a basis under which it is upper triangular.
* Invertibility, and eigenvalues of upper triangular matrices.

L28, Wed 03/30.
L29, Fri 04/01.

- Inner product spaces
$-\langle x, y\rangle=\sum_{i} x_{i} y_{i}=y^{\mathrm{t}} x$ as a generalization of $\|x\|\|y\| \cos \alpha$.
- Using the inner-product to define length: $\|x\|=\sqrt{\langle x, x\rangle}$.

L31, Wed 04/06.

L36, Wed 04/20.

- Complex inner products.
- Orthogonality, Pythagoras theorem.
- Cauchy-Schwartz inequality
- Triangle inequality.
- Orthonormal sets.
* Linear independence.
* Coordinates with respect to an orthonormal basis.
* Gram-Schmidt orthogonalization.
- Orthogonal projections.
* Existence, and uniqueness.
* Length minimizing property: If P is the orthogonal projection onto U, then $\|v-P v\| \leqslant\|v-u\|$ for all $v \in V, u \in U$.
L34, Wed 04/13.
- Introduction to Least squares.
* Minimize error when solving $A x=b$
* The least squares solution x_{*} is defined to be the solution of $A x_{*}=P b$, where P is the orthogonal projection onto im (A).
* The least squares solution can be found by solving the normal equation $A^{*} A x_{*}=A^{*} b$ (proof next week).
- Orthogonal compliments.
* If P is the orthogonal projection onto U, then $U=\operatorname{im}(P)$, and $U^{\perp}=\operatorname{ker}(P)$.
* $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)$.
* For all $v \in V$, there exist unique $u_{1} \in U$ and $u_{2} \in U^{\perp}$ such that $v=u_{1}+u_{2}$.
- Duals
- If $\operatorname{dim}(V)<\infty$, and $\varphi \in V^{*}$ then there exists a unique $v \in V$ such that $\varphi(u)=\langle u, v\rangle$ for all $u \in V$.
* Proof 1: $T: V \rightarrow V^{*}$ by $T(v)(u)=\langle u, v\rangle$, and check that T is (conjugate) linear and injective. This would imply T is surjective, finishing the proof.
* Proof 2: Let $U=\operatorname{ker}(\varphi)$. If $U=V$, then choose $v=0$. If not, pick any $v_{1} \in V$ non-zero, and choose $v=\frac{\overline{\varphi\left(v_{1}\right)}}{\left\|v_{1}\right\|^{2}} v_{1}$.
- Adjoints
* If $V=\mathbb{R}^{n}$, with the standard inner product, $A \in$ $\operatorname{Mat}(n, n, \mathbb{R})$, and $T x=A x$, then $T^{*} x=A^{\mathrm{t}} x$.
* If $V=\mathbb{C}^{n}$, with the standard inner product, $A \in$ $\operatorname{Mat}(n, n, \mathbb{C})$, and $T x=A x$, then $T^{*} x=\overline{A^{\mathrm{t}}} x$.
* If $\operatorname{dim}(V)<\infty$, then T^{*} exists.
* Uniqueness of the adjoint.
- Self-adjoint operators
* $T=T^{*} \Longrightarrow$ all eigenvalues are real.
* $T=T^{*} \Longrightarrow$ eigenvectors corresponding to distinct eigenvalues are orthogonal.
- Orthogonal transformations

L38, Mon 04/25.

- Normal operators
* T normal $\Longrightarrow T-\lambda I$ is also normal.
* T normal $\Longrightarrow\|T v\|=\left\|T^{*} v\right\|$
* T normal and $T v=\lambda v \Longrightarrow T^{*} v=\bar{\lambda} v$.
* Spectral theorem: T normal, $\operatorname{dim}(V)<\infty, F=\mathbb{C}$, then there exists an orthonormal basis of V consisting of eigenvectors of T. (Proof: Choose an eigenvector v_{1}, put $U=$ $\operatorname{span}\left\{v_{1}\right\}^{\perp}$, show $T, T^{*} \in \mathcal{L}(U, U)$, and use induction.)

