Math 341 Syllabus and Lecture schedule. L10, Wed 02/02. * Any vector can be *uniquely* expressed as a linear combination of basis vectors. Gautam Iyer, Fall 2010 - Error correcting codes. * $F = \{0, 1\}$, choose $a, b, c \in F$. L1, Mon 01/10. • Introduction & motivation * Pick $\{v_1, v_2, v_3\} \in F^n$, and transmit the message u =• Fields $av_1 + bv_2 + cv_3$. * Let $C = \operatorname{span}\{v_1, v_2, v_3\}$. If $e_i \notin C$ for all *i*, then one error - Definition. can be detected. – Examples. $\mathbb{R}, \mathbb{Q}, \{0, 1\}$, etc. (Also non-examples like \mathbb{Z}). * If $e_i + e_j \notin C$ for $i \neq j$, then one error can be corrected. – Multiplication by 0. * E.g. $n = 6, v_1 = e_1 + e_2 + e_3, v_2 = e_1 + e_4 + e_5,$ - Uniqueness of inverses. Inverse of inverses. L2, Wed 01/12. $v_3 = e_1 + e_3 + e_4 + e_6$. Allows you to transmit a 3 bit (-a)(-b) = ab, etc. message using 6 bits, such that an error of at most 1 bit can be corrected! – Complex Numbers L11, Fri 02/04. $-\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V).$ • Vector spaces L3, Fri 01/14. L12, Mon 02/07. • Linear transformations - 'Head-to-toe' addition in \mathbb{R}^2 . – Definition, and some examples. - Axiomatic definition. - Kernel, image. Proof that $\ker(T)$ and $\operatorname{im}(T)$ are subspaces. - Examples: $0, \mathbb{R}^n, F^n$, function spaces. $-\mathcal{L}(U,V)$, and proof that it is a vector space. – Subspaces, examples. L4, Wed 01/19. L13, Fri 02/11. * Closure of $\mathcal{L}(U, U)$ under composition. $-U \subseteq V$ a subspace iff $U \neq \emptyset$ and $\forall u, v \in U, \alpha \in F, u + \alpha v \in U$. * Associativity, non-commutativity, Identity. L5, Fri 01/21. – Span, Linear Independence L14, Mon 02/14. * $T \in \mathcal{L}(U, V)$ bijective $\implies T^{-1} \in \mathcal{L}(V, U)$. * Define span $\{v_1, \ldots, v_n\}$, and show it is a subspace. * $T \in \mathcal{L}(U, V)$ injective $\iff \ker(T) = \{0\}.$ * Define linear independence, linear dependence, and Basis L15, Wed 02/16. - Rank Nullity: $\dim(\ker(T)) + \dim(\operatorname{im}(T)) = \dim(\operatorname{domain}(T)).$ L6, Mon 01/24. * Example of L.I. * If $T \in \mathcal{L}(U, V)$, and $\dim(U) < \dim(V) < \infty$ then T is not * Let S be L.I. Then $S \cup \{u\}$ is L.I. iff $u \notin \operatorname{span}(S)$. surjective. L7. Wed 01/26. – Basis and Dimension * If $T \in \mathcal{L}(U, V)$, and $\infty > \dim(U) > \dim(V)$ then T is not * If V is spanned by n vectors, then any n + 1 vectors in V injective. are linearly dependent. * Any system of linear homogeneous equations with more vari-* Linearly independent lists can't be longer than spanning ables than equations has a non-zero solution. lists. L16, Fri 02/18. * Isomorphisms. L8, Fri 01/28. * Any two (finite) basis have the same cardinality. - Matrices * Any L.I. subset of a finitely generated vector space can be * Linear transformations can be uniquely determined from valextended to a basis. ues on basis vectors. * Any finitely generated vector space has a basis. * Define matrix representations of vectors and linear transfor-* Define dimension of a vector space. mations. L9, Mon 01/31. * Any subspace of a finitely generated vector space is also * Compute $\mathcal{M}_C(Tu)$ in terms of $\mathcal{M}_{B,C}(u)$ and $\mathcal{M}_B(u)$. finitely generated; and hence has dimension not larger than L17, Mon 02/21. * Define Mat(n, m, F)that of the whole space. * Motivate the definition of matrix multiplication by compo-* Any n L.I. vectors in a space of dimension n are also spansition of linear transformations. ning. * Any *n* spanning vectors in a space of dimension *n* are also *L18*, Wed 02/23. • Linear equations L.I. - Elementary row operations don't change solutions of Ax = b.

	– Row reduced echelon matrices.		– Complex inner products.
	* Pivots, free variables, and 'reading off' solutions to $Ax = b$.	L30, Mon 04/04.	– Orthogonality, Pythagoras theorem.
L19, Fri 02/25.	\ast Row reduction to row reduced echelon form.		- Cauchy-Schwartz inequality
	– Matrix inverses: If $\operatorname{rref}(A I) = (I B)$ then $B = A^{-1}$.	L31, Wed 04/06.	– Triangle inequality.
$L20, Mon 02/28. \bullet$ Polynomials			– Orthonormal sets.
	– Define $P_F(x)$ to be the ring of formal polynomials.		* Linear independence.
	– Degree, addition, multiplication.		\ast Coordinates with respect to an orthonormal basis.
	- For $p, q \in P_F(x)$, with $q \neq 0, \exists s, r \in P_F(x)$ such that $p = qs + r$ and $\deg(r) < \deg(q)$.	L32, Fri 04/08. L33, Mon 04/11.	* Gram-Schmidt orthogonalization.– Orthogonal projections.
L21, Wed 03/02.	– The evaluation map E_{α} , roots, divisibility.		 * Existence, and uniqueness. * Length minimizing property: If P is the orthogonal projection onto U, then u = Pu ≤ u = u for all v ∈ V, u ∈ U.
	- If α is a root of f then $(x - \alpha) f$		
	– Fundamental theorem of Algebra	L31 Wed 01/13	- Introduction to Least squares
	- If $f \in P_{\mathbb{C}}(x)$ is non-constant, then f factors completely as a product of linear polynomials.	104, Wea 04/10.	* Minimize error when solving $Ax = b$ * The <i>least squares</i> solution x_* is defined to be the solution of
L22, Mon $03/14$. • Eigenvalues			$Ax_* = Pb$, where P is the orthogonal projection onto im(A).
	– Definition		* The least squares solution can be found by solving the nor-
	– Eigenvalues of diagonal matrices.		mal equation $A^*Ax_* = A^*b$ (proof next week).
	 Eigenvectors corresponding to distinct eigenvalues are linearly independent. 		- Orthogonal compliments. * If P is the orthogonal projection onto U, then $U = im(P)$, and $U^{\perp} = kor(P)$
	- If dim $(V) < \infty$, then λ an eigenvalue of $T \iff T - \lambda I$ is not invertible.	1.35 Man 01/18	* dim (U) = dim (U^{\perp}) = dim (V) . * For all $u \in V$ there exist unique $u_{i} \in U$ and $u_{i} \in U^{\perp}$ such
L23, Wed 03/16.	- If $F = \mathbb{C}$, dim $(V) < \infty$, then every linear transformation from V to V has an eigenvalue.	100, 1101 04/10.	that $v = u_1 + u_2$.
	– Explicitly computing eigenvalues of 2×2 matrices.		- If dim $(V) < \infty$ and $\omega \in V^*$ then there exists a unique $v \in V$
L24, Fri 03/18.	– Tournament ranking / page rank.		such that $\varphi(u) = \langle u, v \rangle$ for all $u \in V$.
L25, Mon 03/21.	 Diagonalizable transformations, matrices. * Computing powers of diagonalizable matrices. * Computing Fibonacci numbers as an application. 		* Proof 1: $T: V \to V^*$ by $T(v)(u) = \langle u, v \rangle$, and check that T is (conjugate) linear and injective. This would imply T is surjective, finishing the proof.
L26, Fri 03/25.	- Basis change: If B, C are two basis of V then * For $x \in V$, $\mathcal{M}_C(x) = \mathcal{M}_C(B)\mathcal{M}_B(x)$. * $\mathcal{M}_C(T) = P^{-1}\mathcal{M}_B(T)P$, where $P = \mathcal{M}_B(C)$.	L36, Wed 04/20.	 * Proof 2: Let U = ker(φ). If U = V, then choose v = 0. If not, pick any v₁ ∈ V non-zero, and choose v = φ(v₁)/ v₁ ² v₁. - Adjoints
L27, Mon 03/28.	 Upper triangular matrices. * If F = C, and dim(V) < ∞, then any linear transformation has a basis under which it is upper triangular. 	* If $V = \mathbb{R}^n$, with the standard inner produ- Mat (n, n, \mathbb{R}) , and $Tx = Ax$, then $T^*x = A^tx$. * If $V = \mathbb{C}^n$, with the standard inner produ- Mat (n, n, \mathbb{C}) , and $Tx = Ax$, then $T^*x = \overline{A^t}x$.	* If $V = \mathbb{R}^n$, with the standard inner product, $A \in Mat(n, n, \mathbb{R})$, and $Tx = Ax$, then $T^*x = A^tx$. * If $V = \mathbb{C}^n$, with the standard inner product, $A \in Mat(n, n, \mathbb{C})$, and $Tx = Ax$, then $T^*x = \overline{A^tx}$.
$L28, Wed \ 03/30.$	* Invertibility, and eigenvalues of upper triangular matrices.		* If $\dim(V) < \infty$, then T^* exists.
L29, Fri 04/01.	• Inner product spaces	L37, Fri 04/22.	* Uniqueness of the adjoint.
	$-\langle x,y\rangle = \sum_i x_i y_i = y^{\mathrm{t}} x$ as a generalization of $ x y \cos \alpha$.		– Self-adjoint operators
	– Using the inner-product to define length: $ x = \sqrt{\langle x, x \rangle}$.		$* T = T^* \implies$ all eigenvalues are real.

- * $T = T^* \implies$ eigenvectors corresponding to distinct eigenvalues are orthogonal.
- Orthogonal transformations
- L38, Mon 04/25. Normal operators
 - * T normal $\implies T \lambda I$ is also normal.
 - * T normal $\implies ||Tv|| = ||T^*v||$
 - * T normal and $Tv = \lambda v \implies T^*v = \bar{\lambda}v.$
 - * Spectral theorem: T normal, $\dim(V) < \infty$, $F = \mathbb{C}$, then there exists an orthonormal basis of V consisting of eigenvectors of T. (Proof: Choose an eigenvector v_1 , put U = $\operatorname{span}\{v_1\}^{\perp}$, show $T, T^* \in \mathcal{L}(U, U)$, and use induction.)