21341 Linear Algebra: Midterm 1.

Wed 03/23

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 minutes. The exam has a total of 5 questions and 50 points.
- You may use without proof any result that has been proved in class or on the homework, provided you CLEARLY state the result you are using.
- Difficulty wise: $\# 1 \leqslant \# 2 \approx \# 3<\# 4<\# 5$. The first inequality is not strict. The last two are. (The last inequality is slightly 'stricter' than the others.)

In this exam, we always assume V is a vector space over a field F.
10 1. Let $F=\mathbb{R}$, and V be the vector space consisting of all real valued functions with domain $[0,1]$. For any $f \in V$, define $T f=f(1)-f(0)+1$. Does $T \in \mathcal{L}(V, \mathbb{R})$ (i.e. is T a linear transformation)? Prove / disprove.

10 2. Let $M=\left(\begin{array}{rrr}-1 & 1 & 1 \\ 1 & -1 & 2\end{array}\right) \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$. Find a basis of $\operatorname{ker}(M)$. [Recall $\operatorname{ker}(M)=\left\{x \in \mathbb{R}^{3} \mid M x=0\right\}$.]
10 3. Does there exist $T \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ such that $\operatorname{im}(T)=\operatorname{ker}(T)$? If yes, find an example. If no, prove it. [If you say 'Yes' and produce an example, then you should also prove that your example has the desired properties.]

10 4. Suppose $T \in \mathcal{L}(V, V)$ is an injective linear transformation such that $T^{2}=4 T$. Find all eigenvalues of T. (You should prove whatever answer you get.)
5. Let $U \subseteq F^{n}$ be a subspace with $\operatorname{dim}(U)=m<n$. Show that there exists an $(n-m) \times n$ dimensional matrix M such that $U=\operatorname{ker}(M)$.

