21341 Linear Algebra: Midterm 1.
 Wed 02/09

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 minutes. The exam has a total of 5 questions and 50 points.
- You may use without proof any result that has been proved in class or on the homework, provided you CLEARLY state the result you are using.
- Difficulty wise: $\# 1 \leqslant \# 2 \approx \# 3<\# 4<\# 5$. The first inequality is not strict. The last two are. (The last inequality should be 'stricter' than the others.)

In this exam, we always assume V is a vector space over a field F.

10 2. Let $n \geqslant 2, V=F^{n}$. Let $u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right) \in V, v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$. Suppose $u_{1} \neq 0$, and for every $i \in\{1, \ldots, n\} \in V, u_{1} v_{i}-u_{i} v_{1}=0$. Show that $\{u, v\}$ is linearly dependent.
10 3. Let $F=\mathbb{C}, V=\mathbb{C}^{3}$. Let $u=\left(\begin{array}{c}1+2 i \\ 1-i \\ 3+i\end{array}\right)$, and $v=\left(\begin{array}{c}-3+4 i \\ 3+i \\ 1+7 i\end{array}\right)$. Is the set $\{u, v\}$ linearly independent? Justify.
4. Let $n \geqslant 2$, and suppose $\alpha_{1}, \ldots, \alpha_{n} \in F$ are not all 0 . Let U be the subspace defined by

$$
U=\left\{\left.\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in F^{n} \right\rvert\, \alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}=0\right\}
$$

Show that $\operatorname{dim}(U)=n-1$. [For simplicity, you may assume $\alpha_{n} \neq 0$. The hint is to find a basis of U consisting of vectors, each having only two, strategically chosen, non-zero coordinates.]

10 5. Let $n \geqslant 2$, and $U \subseteq F^{n}$ be a subspace of dimension $n-1$. Show that there exist $\alpha_{1}, \ldots, \alpha_{n} \in F$, which are not all 0 , such that

$$
U=\left\{\left.\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in F^{n} \right\rvert\, \alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}=0\right\}
$$

