Homework Assignment 9

Assigned Fri 04/01. Due Fri 04/08.

1. (Optional) Let M be an upper triangular matrix. Show that the eigenvalues of M are exactly the diagonal entries of M. [I stated, but did not finish proving this in class.]
2. (a) Let $M=\left(\begin{array}{ccc}\lambda_{1} & * & * \\ & \ddots & * \\ & & \lambda_{n}\end{array}\right)$, and $N=\left(\begin{array}{ccc}\mu_{1} & * & * \\ & \ddots & * \\ & & \mu_{n}\end{array}\right)$. Show that $M N$ is upper triangular. What are the diagonal entries of $M N$?
(b) Let B be a basis of V and $T \in \mathcal{L}(V, V)$ be such that $\mathcal{M}_{B}(T)$ is upper triangular. Show that $\mathcal{M}_{B}\left(T^{-1}\right)$ is also upper triangular.

Let $T \in \mathcal{L}(V, V)$. We say $f \in P_{F}(x)$ is the minimal polynomial of T if f has leading coefficient 1 , and f is the polynomial of smallest degree such that $f(T)=0$. That is, f is of the form $1 \cdot x^{n}+$ $a_{n-1} x^{n-1} \cdots+a_{0}, f(T)=0$, and whenever $g(T)=0, \operatorname{deg}(g) \geqslant \operatorname{deg}(f)$.
3. (a) Suppose $T \in \mathcal{L}(V, V)$ is diagonalizable, and $\lambda_{1}, \ldots, \lambda_{k}$ are the k distinct eigenvalues of T. Show that $f=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{k}\right)$ is the minimal polynomial of T. [Note: We know $k \leqslant \operatorname{dim}(V)$ from class, however we have not assumed $k=\operatorname{dim}(V)$.]
(b) Compute the minimal polynomial of $\left(\begin{array}{cc}-1 & 2 \\ -2 & 3\end{array}\right)$.
4. Here are two important properties about minimal polynomials.
(a) Let f be the minimal polynomial of T. If $g \in P_{F}(x)$ is such that $g(T)=0$, show that $f \mid g$.
(b) If $P \in \mathcal{L}(V, V)$ is invertible, show that T and $P^{-1} T P$ have the same minimal polynomial.
5. You might wonder if any linear transformation has a minimal polynomial. This is guaranteed on finite dimensional vector spaces.
(a) Suppose $\operatorname{dim}(V)=n<\infty$, and $T \in \mathcal{L}(V, V)$. Show that there exists a non-zero polynomial $g \in P_{F}(x)$ with $\operatorname{deg}(g) \leqslant n^{2}$ such that $g(T)=0$. Conclude that T has a (unique) minimal polynomial of degree at most n^{2}. [On a later homework, we'll show that in fact the minimal polynomial can have degree at most n. This is the Cayley-Hamilton theorem.]
(b) Let $V=P_{F}(x)$, and define $T \in \mathcal{L}(V, V)$ by $T f=f^{\prime}$. Show that T has no minimal polynomial.
6. We've seen previously that that the minimal polynomial of a diagonalizable linear transformation factors into a product of distinct linear factors. The converse is also true, and this question is devoted to proving it. [Note that any polynomial over \mathbb{C} factors into linear factors, but these factors are not necessarily distinct! The key point in this statement is that a transformation is diagonalizable iff the minimal polynomial factors into distinct linear factors.]
(a) Let $\lambda_{1}, \ldots, \lambda_{k} \in F$ be distinct. Let $p_{i} \in P_{F}(x)$ be defined by $p_{i}=\prod_{j \neq i} \frac{x-\lambda_{j}}{\lambda_{i}-\lambda_{j}}$. If $g \in P_{F}(x)$ with $\operatorname{deg}(g)<k$, then show that $g=\sum_{1}^{k} g\left(\lambda_{i}\right) p_{i}$. In particular, show $\sum p_{i}=1$. [Hint: Show first $p_{i}\left(\lambda_{j}\right)=1$ if $i=j$ and 0 otherwise. Now how many roots does $g-\sum g\left(\lambda_{i}\right) p_{i}$ have?]

For the next few parts, let λ_{i}, p_{i} be as in the previous part. Let $T \in \mathcal{L}(V, V)$ be such that the minimal polynomial of T is $\prod_{i}\left(x-\lambda_{i}\right)$. Let $P_{i}=p_{i}(T)$, and $E_{\lambda_{i}}=\operatorname{ker}\left(T-\lambda_{i} I\right)$.
(b) Show that for all $i, P_{i} \in L\left(V, E_{i}\right)$ and $P_{i}^{2}=P_{i}$. Further, for all $i \neq j$ show that $P_{i} P_{j}=0$.
(c) Show that $\sum_{i=1}^{k} P_{i}=I$. Conclude that T is diagonalizable. [Hint: If B_{i} is a basis of $E_{\lambda_{i}}$, show that $B=\cup_{i} B_{i}$ is a basis of V.]

