Homework Assignment 8

Assigned Fri 03/25. Due Fri 04/01.

- 1. Say $f = \sum_{0}^{n} a_{i} x^{i} \in P_{F}(x)$. Recall that for $T \in \mathcal{L}(V, V)$ we define $f(T) = \sum_{0}^{n} a_{i} T^{i}$, with the convention that $T^{0} = I$.
 - (a) In general if $S, T \in \mathcal{L}(V, V)$, show that you need not have f(S)g(T) = g(T)f(S).
 - (b) If however ST = TS, then show that f(S)g(T) = g(T)f(S).
- 2. Let $T \in \mathcal{L}(V, V)$ and $f \in P_F(x)$. If λ is an eigenvalue of T, show that $f(\lambda)$ is an eigenvalue of f(T). Hence, or otherwise, show that if f(T) = 0, then λ is a root of f.
- 3. Let $\lambda_1, \ldots, \lambda_n \in F$, and M be the $n \times n$ diagonal matrix defined by

$$M = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{pmatrix}$$

Recall our convention that blank entries in a matrix are assumed to be 0. We've seen in class that $\lambda_1, \ldots, \lambda_n$ are all eigenvalues of M. Show that M has no other eigenvalues.

- 4. In class, we saw that if a matrix M can be diagonalized, the powers M^n can be easily computed explicitly. When M can't be diagonalized, the story is a little more complicated. Here's an example.
 - (a) Let $M = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$, with $1 \neq 0$. Find an explicit formula for M^n .
 - (b) Let $F = \mathbb{R}$, and $A = \begin{pmatrix} 4 & 4 \\ -1 & 8 \end{pmatrix}$. Show that A is not diagonalizable. (I.e. show that there does not exist a basis of \mathbb{R}^2 consisting of eigenvectors of A.)
 - (c) Find $v_1, v_2 \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$ such that $Av_1 = \lambda v_1$, and $Av_2 = \lambda v_2 + v_1$.
 - (d) Compute an explicit formula for A^n .
- 5. (a) (Hard) If $S, T \in \mathcal{L}(V, V)$ are such that I ST is invertible, then show that I TS is invertible. (b) If dim $(V) < \infty$, and λ is an eigenvalue of ST, show that λ is an eigenvalue of TS.