Homework Assignment 8

Assigned Fri 03/25. Due Fri 04/01.

1. Say $f=\sum_{0}^{n} a_{i} x^{i} \in P_{F}(x)$. Recall that for $T \in \mathcal{L}(V, V)$ we define $f(T)=\sum_{0}^{n} a_{i} T^{i}$, with the convention that $T^{0}=I$.
(a) In general if $S, T \in \mathcal{L}(V, V)$, show that you need not have $f(S) g(T)=g(T) f(S)$.
(b) If however $S T=T S$, then show that $f(S) g(T)=g(T) f(S)$.
2. Let $T \in \mathcal{L}(V, V)$ and $f \in P_{F}(x)$. If λ is an eigenvalue of T, show that $f(\lambda)$ is an eigenvalue of $f(T)$. Hence, or otherwise, show that if $f(T)=0$, then λ is a root of f.
3. Let $\lambda_{1}, \ldots, \lambda_{n} \in F$, and M be the $n \times n$ diagonal matrix defined by

$$
M=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

Recall our convention that blank entries in a matrix are assumed to be 0 . We've seen in class that $\lambda_{1}, \ldots, \lambda_{n}$ are all eigenvalues of M. Show that M has no other eigenvalues.
4. In class, we saw that if a matrix M can be diagonalized, the powers M^{n} can be easily computed explicitly. When M can't be diagonalized, the story is a little more complicated. Here's an example.
(a) Let $M=\left(\begin{array}{c}\lambda \\ \lambda \\ \lambda\end{array}\right)$, with $1 \neq 0$. Find an explicit formula for M^{n}.
(b) Let $F=\mathbb{R}$, and $A=\left(\begin{array}{rr}4 & 4 \\ -1 & 8\end{array}\right)$. Show that A is not diagonalizable. (I.e. show that there does not exist a basis of \mathbb{R}^{2} consisting of eigenvectors of A.)
(c) Find $v_{1}, v_{2} \in \mathbb{R}^{2}$ and $\lambda \in \mathbb{R}$ such that $A v_{1}=\lambda v_{1}$, and $A v_{2}=\lambda v_{2}+v_{1}$.
(d) Compute an explicit formula for A^{n}.
5. (a) (Hard) If $S, T \in \mathcal{L}(V, V)$ are such that $I-S T$ is invertible, then show that $I-T S$ is invertible.
(b) If $\operatorname{dim}(V)<\infty$, and λ is an eigenvalue of $S T$, show that λ is an eigenvalue of $T S$.

