Homework Assignment 7

Assigned Fri 02/25. Due Fri 03/18.

1. (a) Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in Mat(3,3,\mathbb{R}).$$

- (b) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find a necessary and sufficient condition for A to be invertible. Find an explicit formula for A^{-1} .
- 2. Let A be a $m \times n$ matrix. We define the transpose of the matrix A^{t} (sometimes denoted by A^{*}) to be the matrix obtained by interchanging the rows and columns of the matrix. For example, $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}^{t} = \begin{pmatrix} b & a \\ c & e \\ c & e \end{pmatrix}$. If A is an $m \times n$ matrix, B is an $n \times n'$ matrix, show that $(AB)^{t} = B^{t}A^{t}$.
- 3. Let $T \in \mathcal{L}(U, V)$, $B = \{u_1, \ldots, u_m\}$ an basis of U, and $C = \{v_1, \ldots, v_n\}$ be an basis of V, and let $M = \mathcal{M}_{B,C}(T)$.
 - (a) We define the *column rank* of the matrix M to be the maximum number of linearly independent columns of M. That is, treat the columns of M as m vectors in F^n . Then the cardinality of the largest linearly independent subset of these m vectors is defined to be the column rank of M.

Show that the column rank of M equals $\dim(\operatorname{im}(T))$.

- (b) Similarly, we define the row rank of the matrix M to be the maximum number of linearly independent rows of M. Show that the row rank of M equals $m \dim(\ker(T))$. Show also that $\dim(\ker(T))$ equals the number of free variables in the row reduced echelon form of M.
- (c) Show that the row rank and column rank of M are equal.
- 4. Let $\{v_1, \ldots, v_n\} \subseteq F^m$, and suppose you want to find a basis for $V = \text{span}\{v_1, \ldots, v_n\}$. We know any spanning set contains a basis. The following algorithm will tell you how to choose a subset $\{v_1, \ldots, v_n\}$ which is a basis of V. First form a matrix with v_1, \ldots, v_n as columns. Now put this matrix in row reduced echelon form. Now, for each i, if the i^{th} column in the reduced matrix is a pivot (i.e. contains a leading 1), pick the vector v_i to be part of your basis. If the column is not a pivot, don't pick the vector. We claim that this algorithm will give you a method to reduce $\{v_1, \ldots, v_n\}$ to a basis of V.
 - (a) Using the above algorithm, reduce the following sets to a linearly independent set with the same span.
 - same span. (a) $\left\{ \begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}, \begin{pmatrix} -2\\ 3\\ 1 \end{pmatrix} \right\}$
- (b) $\left\{ \begin{pmatrix} 1\\-2\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-8\\4\\5 \end{pmatrix}, \begin{pmatrix} 4\\7\\-1\\-1 \end{pmatrix} \right\}$
- (c) Prove that the above algorithm works.
- (d) Explain how you would adapt this algorithm if F^m above was replaced with an abstract (finite dimensional) vector space U.
- 5. (a) Let $p, q, d \in P_F(x)$. We say d is a common factor of p and q if d is non-constant, d|p and d|q. We say p and q have no common factor if whenever d|p and d|q, d must be a constant polynomial. If $p, q \in P_F(x)$ have no common factor, show that there exist $a, b \in P_F(x)$ such that ap + bq = 1.
 - (b) We say a non-constant polynomial $p \in P_F(x)$ is prime if whenever p|fg, we must have p|f or p|g for every $f, g \in P_F(x)$. We say a non-constant polynomial $q \in P_F(x)$ is *irreducible* if for every $f, g \in P_F(x)$ whenever q = fg, either f or g is a constant polynomial. Show that $p \in P_F(x)$ is prime if and only if it is irreducible.
 - (c) Find all prime polynomials in $P_{\mathbb{C}}(x)$.
 - (d) Find all prime polynomials in $P_{\mathbb{R}}(x)$.