Homework Assignment 7

Assigned Fri 02/25. Due Fri 03/18.

1. (a) Compute the inverse of the matrix $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right) \in \operatorname{Mat}(3,3, \mathbb{R})$.
(b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find a necessary and sufficient condition for A to be invertible. Find an explicit formula for A^{-1}.
2. Let A be a $m \times n$ matrix. We define the transpose of the matrix A^{t} (sometimes denoted by A^{*}) to be the matrix obtained by interchanging the rows and columns of the matrix. For example, $\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)^{\mathrm{t}}=\left(\begin{array}{cc}a & d \\ b & e \\ c & f\end{array}\right)$. If A is an $m \times n$ matrix, B is an $n \times n^{\prime}$ matrix, show that $(A B)^{\mathrm{t}}=B^{\mathrm{t}} A^{\mathrm{t}}$.
3. Let $T \in \mathcal{L}(U, V), B=\left\{u_{1}, \ldots, u_{m}\right\}$ an basis of U, and $C=\left\{v_{1}, \ldots, v_{n}\right\}$ be an basis of V, and let $M=\mathcal{M}_{B, C}(T)$.
(a) We define the column rank of the matrix M to be the maximum number of linearly independent columns of M. That is, treat the columns of M as m vectors in F^{n}. Then the cardinality of the largest linearly independent subset of these m vectors is defined to be the column rank of M.
Show that the column rank of M equals $\operatorname{dim}(\operatorname{im}(T))$.
(b) Similarly, we define the row rank of the matrix M to be the maximum number of linearly independent rows of M. Show that the row rank of M equals $m-\operatorname{dim}(\operatorname{ker}(T))$. Show also that $\operatorname{dim}(\operatorname{ker}(T))$ equals the number of free variables in the row reduced echelon form of M.
(c) Show that the row rank and column rank of M are equal.
4. Let $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq F^{m}$, and suppose you want to find a basis for $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$. We know any spanning set contains a basis. The following algorithm will tell you how to choose a subset $\left\{v_{1}, \ldots, v_{n}\right\}$ which is a basis of V. First form a matrix with v_{1}, \ldots, v_{n} as columns. Now put this matrix in row reduced echelon form. Now, for each i, if the $i^{\text {th }}$ column in the reduced matrix is a pivot (i.e. contains a leading 1), pick the vector v_{i} to be part of your basis. If the column is not a pivot, don't pick the vector. We claim that this algorithm will give you a method to reduce $\left\{v_{1}, \ldots, v_{n}\right\}$ to a basis of V.
(a) Using the above algorithm, reduce the following sets to a linearly independent set with the
same span.
(a) $\left\{\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}-2 \\ 3 \\ 1\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{r}1 \\ -2 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{r}2 \\ 1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{r}-1 \\ -8 \\ 4 \\ 5\end{array}\right),\left(\begin{array}{r}4 \\ 7 \\ -5 \\ -1\end{array}\right)\right\}$
(c) Prove that the above algorithm works.
(d) Explain how you would adapt this algorithm if F^{m} above was replaced with an abstract (finite dimensional) vector space U.
5. (a) Let $p, q, d \in P_{F}(x)$. We say d is a common factor of p and q if d is non-constant, $d \mid p$ and $d \mid q$. We say p and q have no common factor if whenever $d \mid p$ and $d \mid q, d$ must be a constant polynomial. If $p, q \in P_{F}(x)$ have no common factor, show that there exist $a, b \in P_{F}(x)$ such that $a p+b q=1$.
(b) We say a non-constant polynomial $p \in P_{F}(x)$ is prime if whenever $p \mid f g$, we must have $p \mid f$ or $p \mid g$ for every $f, g \in P_{F}(x)$. We say a non-constant polynomial $q \in P_{F}(x)$ is irreducible if for every $f, g \in P_{F}(x)$ whenever $q=f g$, either f or g is a constant polynomial. Show that $p \in P_{F}(x)$ is prime if and only if it is irreducible.
(c) Find all prime polynomials in $P_{\mathbb{C}}(x)$.
(d) Find all prime polynomials in $P_{\mathbb{R}}(x)$.
