Homework Assignment 6

Assigned Fri 02/18. Due Fri 02/25.

1. Suppose $T \in L(U, V)$, and $\operatorname{dim}(U)=\operatorname{dim}(V)<\infty$. Show that T is injective if and only if T is surjective.
2. (a) Suppose U is a finite dimensional vector space over F, and $S, T \in \mathcal{L}(U, U)$ are such that $S T=I$. Show that $T S=I$.
(b) Show that the previous subpart is false if U is not finite dimensional. Namely find an infinite dimensional vector space, and two linear transformations $S, T \in \mathcal{L}(U, U)$ such that $S T=I$ but $T S \neq I$.
3. Let $S, T \in \mathcal{L}(U, U)$. Show that $S T$ is invertible if and only if both S and T are invertible. In this case, express $(S T)^{-1}$ in terms of S^{-1} and T^{-1}.
4. (a) Let U be a finite dimensional vector space over F. Let $B=\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of U. Let $T: U \rightarrow F^{m}$ be defined by $T(u)=\mathcal{M}_{B}(u)$ (i.e. $T(u)$ is the matrix representation of u with respect to the basis B). Show that T is an isomorphism.
(b) Suppose U and V are two finite dimensional vector spaces over F. Show that U and V are isomorphic if and only if $\operatorname{dim}(U)=\operatorname{dim}(V)$. [This result is false if $\operatorname{dim}(U)=\operatorname{dim}(V)=\infty$.]
5. Let U, V be two vector spaces, $B=\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of $U, V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis if V.
(a) If $S, T \in \mathcal{L}(U, V)$, show that $\mathcal{M}_{B, C}(S+T)=\mathcal{M}_{B, C}(S)+\mathcal{M}_{B, C}(T)$.
(b) Let $\varphi: \mathcal{L}(U, V) \rightarrow \operatorname{Mat}(n, m, F)$ be defined by $\varphi(T)=\mathcal{M}_{B, C}(T)$. Show that φ is an isomorphism. Conclude $\operatorname{dim} \mathcal{L}(U, V)=m n$.
(c) If W is a vector space, $D=\left\{w_{1}, \ldots, w_{N}\right\}$ a basis of $W, S \in \mathcal{L}(U, V), T \in \mathcal{L}(V, W)$, then show that $\mathcal{M}_{C, D}(T) \mathcal{M}_{B, C}(S)=\mathcal{M}_{B, D}(T S)$.
