Homework Assignment 4

Assigned Fri 01/28. Due Fri 02/04.

1. (a) Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$, and assume $v_{1} \neq 0$. Show that S is linearly dependent, if and only if there exists $j \in\{2, \ldots, n\}$ such that $v_{j} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$.
(b) Suppose S is linearly dependent, and j is as in the previous subpart, show that $\operatorname{span}(S)=$ $\operatorname{span}\left(S-\left\{v_{j}\right\}\right)$ (i.e. show $\left.\operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}\right)$.
2. Suppose $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$, and $V \neq\{0\}$. Show that any (finite) spanning set contains a basis. Namely, if $\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}=V$, then show that there exists $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq\left\{u_{1}, \ldots, u_{m}\right\}$ such that $\left\{w_{1}, \ldots, w_{k}\right\}$ is a basis of V.
3. (a) Suppose $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent. Show that any non-empty subset of S is also linearly independent.
(b) Suppose $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent. Show that any finite superset of S is also linearly dependent.
4. Let V be a vector space over some field F, and $B \subseteq V$ a finite and non-empty set. Prove that the following statements are equivalent:
(a) B is a basis of V.
(b) B is a maximal linearly independent subset of V. Namely B is linearly independent, and if $C \supsetneq B$, then C is linearly dependent.
(c) B is a minimal spanning set. Namely $\operatorname{span}(B)=V$, and if $C \subsetneq B$, then $\operatorname{span}(C) \subsetneq V$.
[The usual way to prove that a list of statements are equivalent is to prove (a) implies (b), (b) implies (c) and finally (c) implies (a). While you're free to use your own favourite set of implications, I recommend following the above structure in this case.]
5. So far we've dealt with the spans of finite non-empty sets. Here's how we do it for infinite sets.
(a) Let $S=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq V$, and $U=\operatorname{span}(S)$. Show that U is the minimal subspace of V that contains S. That is, show that $U \supseteq S$, and further, if U^{\prime} is any subspace of V such that $U^{\prime} \supseteq S$, then $U^{\prime} \supseteq U$.

Note that I used the word 'minimal' and not 'smallest' above. The reason for this is that subspaces are usually infinite sets, and comparing cardinalities won't give any useful information (e.g. \mathbb{R} and \mathbb{R}^{2} have the same cardinality).

Now, let $S \subseteq V$ be any subset (not necessarily finite). We define $\operatorname{span}(S)$ to be the minimal subspace of V that contains S ! Of course, before we can make such a definition, we must show that the "minimal subspace of V containing S " exists, and is unique!
(b) Let U the intersection of all subspaces of V that contain S. Show that U is a minimal subspace of V that contains S. [This shows existence.]
(c) If U and U^{\prime} are two minimal subspaces of V that contain S, then show $U=U^{\prime}$. [This shows uniqueness. Now, it is legitimate for us to define $\operatorname{span}(S)$ to be the minimal subspace of V containing S.]
(d) Using the definition of span above, what is $\operatorname{span}(\emptyset)$?
(e) If $S \neq \emptyset$, show that $\operatorname{span}(S)=\left\{\sum_{i=1}^{n} \alpha_{i} v_{i} \mid n \in \mathbb{N}, \alpha_{i} \in F, v_{i} \in S\right\}$. (That is, $\operatorname{span}(S)$ is the set of all finite linear combinations of elements in S.)
Your next homework will contain a question describing linear independence of infinite sets.

