Homework Assignment 3

Assigned Fri 01/21. Due Fri 01/21.

1. Determine whether B is a basis of V over F. Justify your answer.
(a) $B=\left\{\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 4 \\ -3\end{array}\right)\right\} ; V=\mathbb{R}^{3} ; F=\mathbb{R}$.
(b) $B=\left\{1+2 x+x^{2}, 1+x, 1\right\}, F=\mathbb{R}, V=P_{2}(\mathbb{R})$ (polynomials of degree $\leqslant 2$).
(c) $B=\left\{x^{2}, x+1\right\} ; V=P_{2}(F) ; F=\{0,1\}$.
(d) $B=\left\{\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{c}3 \\ 2 \\ -5\end{array}\right)\right\} ; V=\left\{x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=0\right\} ; F=\mathbb{R}$.
2. The conclusion of both subparts below will follow directly from a general theorem we will prove later. However it's worth while doing them out explicitly by hand at least once...
(a) Suppose u_{1}, u_{2} are any two linearly independent vectors in \mathbb{R}^{2}, then show (by direct computation) that $\operatorname{span}\left\{u_{1}, u_{2}\right\}=\mathbb{R}^{2}$.
(b) Let $V=\mathbb{R}^{3}$, and $U \subseteq \mathbb{R}^{3}$ be the plane $x_{1}+x_{2}+x_{3}=0$. Show (by direct computation) that if u_{1}, u_{2} are any two linearly independent vectors in U, then $U=\operatorname{span}\left\{u_{1}, u_{2}\right\}$.
3. Let V be a vector space over a field F.
(a) Suppose U and W are two subspaces of V. Are $U \cup W$ or $U \cap W$ always vector spaces? If yes, prove it. If no, furnish a counter example.
(b) Define $U+W=\{u+w \mid u \in U, w \in W\}$. If U, W are subspaces of V, then show that $U+W$ is also a subspace of V.
(c) If $V=\mathbb{R}^{3}, F=\mathbb{R}, U=\left\{\left.\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{1}+x_{2}=0\right\}$, and $W=\left\{\left.\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\}$, then compute $U+W$.
4. Let $L^{2}[0,1]=\left\{f \mid f:[0,1] \rightarrow \mathbb{R} \ni \int_{0}^{1} f(x)^{2} d x<\infty\right\}$. Define addition and scalar multiplication as you would for functions. Prove that $L^{2}[0,1]$ a vector space over \mathbb{R}. [Note $f:[0,1] \rightarrow \mathbb{R}$ means " f is a real valued function defined on $[0,1]$ ". Thus $L^{2}[0,1]$ is the set of all real valued functions f defined on $[0,1]$ such that $\int_{0}^{1} f(x)^{2} d x<\infty$.]
5. Here's another proof showing that the dimension of a vector space is well defined.
(a) Let F be any field, $m<n \in \mathbb{N}$, and $\alpha_{i j} \in F$ be given. Show that there exists $x_{1}, x_{2}, \ldots, x_{n} \in$ F not all 0 such that

$$
\begin{gathered}
\alpha_{11} x_{1}+\alpha_{12} x_{2}+\cdots+\alpha_{1 n} x_{n}=0 \\
\alpha_{21} x_{1}+\alpha_{22} x_{2}+\cdots+\alpha_{2 n} x_{n}=0 \\
\vdots \\
\alpha_{m 1} x_{1}+\alpha_{m 2} x_{2}+\cdots+\alpha_{m n} x_{n}=0
\end{gathered}
$$

[Hint: In words this problem says that any system of homogeneous linear equations has a non-zero solution, provided you have more variables than equations. The hint is to use induction. But don't get carried away and use some sort of fancy double induction trick on m and n. You can do this directly with induction on one of the variables.]
(b) Suppose now V is a vector space over $F, m<n \in \mathbb{N}$, and $V=\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. Show (using the previous subpart) that any subset of n vectors in V must be linearly dependent. [Hint: Let v_{1}, \ldots, v_{n} be n vectors in V, and express each v_{j} as a linear combination $\sum_{i} \alpha_{i j} u_{i}$. Now somehow reduce linear dependence of v_{j} 's to solving equations like in the previous subpart. Of course, as we've seen in class, this subpart immediately implies that any two (finite) basis in a vector space have the same number of elements.]
(c) The statements in parts (a) and (b) above are really equivalent. Above you should have shown that part (a) implies part (b). Now do the converse: Namely, assuming the result of part (b) above, show that the result in part (a) is true.

