
Solutions to Homework Assignment 12
Assigned Fri 04/29. Due never.

1. Let a, b, c ∈ R, and define C ⊆ R2 by

C = {(x1, x2)
∣∣ ax21 + 2bx1x2 + cx22 = 1}

The point of this problem is to decide if C is a ellipse, parabola or hyperbola.
I’m assuming you must have seen this condition (probably without proof) in
high school coordinate geometry. The advantage of the approach here is that
once you understand it, you can use the trick in higher dimensions. Plus it uses
a bunch of material from the last week, so it serves as a nice review.

(a) Show that there exists θ ∈ [−π, π), λ1, λ2 ∈ R such that

ax21 + 2bx1x2 + cx22 = λ1y
2
1 + λ2y

2
2 ,

where

y1 = x1 cos θ − x2 sin θ, and y2 = x1 sin θ + x2 cos θ.

Solution. Let A =
(
a b
b c

)
. Then ax21 + 2bx1x2 + cx22 = 〈Ax, x〉. Since A is

real and symmetric, the spectral theorem implies there exists an orthogonal
matrix P such that PAP∗ = D, where D =

(
λ1

λ2

)
, for some λ1, λ2 ∈ R.

Replacing P with −P if necessary, we can assume det(P ) = 1.

Thus, by your previous homework, P =
(
cos θ − sin θ
sin θ cos θ

)
for some θ ∈

[−π, π). Now define y = Px. That is, let

y =

(
y1
y2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
=

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
.

Then

ax21 + 2bx1x2 + cx22 = 〈Ax, x〉 = 〈P ∗DPx, x〉 = 〈Dy, y〉 = λ1y
2
1 + λ2y

2
2 .

(b) Find a condition on a, b, c which determines if C is an ellipse, parabola or
hyperbola.

Solution. Observe that the coordinates (y1, y2) in the previous subpart are
a rotation of the standard coordinates (x1, x2). Thus the shape of C is the
same under either coordinate system.

In the coordinates given by y, we immediately see the shape of C. First
note that for C to be non-empty, we must have either λ1 > 0, or λ2 > 0.
Without loss, assume λ1 > 0. Then we immediately see that if λ2 > 0, C is
an ellipse. If λ2 = 0, C is a parabola, and if λ2 < 0 then C is a hyperbola.

Since λ1, λ2 are roots of λ2 − (a+ c)λ+ (ac− b2), one can easily check:

1. If ac− b2 > 0, then C is an ellipse.

2. If ac− b2 = 0, then C is a parabola.

3. If ac− b2 < 0, then C is a hyperbola.

2. Let V be a finite dimensional inner product space. Show that T ∈ L(V, V ) is
positive if and only if there exists S ∈ L(V, V ) such that T = S∗S.

Solution. We’ve seen in class that S∗S is positive. For the converse, note that
by definition positive operators are self adjoint. Thus, by the spectral theorem,
there exists an orthonormal basis {v1, . . . , vn}, and λi ∈ R such that Tvi = λvi.
Note that since T is positive, λi > 0 for all i.

Now let S ∈ L(V, V ) be the unique linear operator such that Svi =
√
λivi.

Since {v1, . . . , vn} is orthonormal you can check that S is self adjoint. Once you
know that, observe S∗Svi = λivi = Tvi. Since defining a linear transformation
on a basis determines it uniquely, we must have S∗S = T .

3. We say T ∈ L(V, V ) is unitary if T ∗ = T−1. (Note, from a similar question on
your previous homework, this is equivalent to saying 〈Tu, Tv〉 = 〈u, v〉.)
(a) Suppose T is unitary, and B is any orthonormal basis of V . Show that

MB(T )
t

=MB(T )−1. [Note: This result is not true if B is not orthonormal.]

Solution. This follows quickly from a more general observation. Namely

MB(T ∗) =MB(T )
t
, as long as B is orthonormal (regardless of weather T

is unitary or not).

To see this, let B = {u1, . . . , un}, MB(T ) = (ai,j), and MB(T ∗) = (bi,j .
Then 〈Tui, uj〉 = ai,j by definition of MB(T ), and because B is orthonor-
mal.

On the other hand, 〈Tui, uj〉 = 〈ui, T ∗uj〉 = b̄j,i by definition of
MB(T ∗), and because B is orthonormal. Consequently ai,j = b̄j,i, proving

MB(T ∗) =MB(T )
t
.

Now if T ∗ = T−1, the claim immediately follows.

(b) Conversely, suppose there exists an orthonormal basis B of V such that

MB(T )
t

=MB(T )−1, then show that T is unitary.

Solution. Very similar to reversing the previous subpart.

Assume subsequently that U, V be are two finite dimensional inner product spaces.

4. If T ∈ L(U, V ) is injective, show that it’s singular values are nonzero.

Solution. Recall that the singular values of T are exactly the square root of
eigenvalues of T ∗T . However, if T is injective, we’ve seen that T ∗T is invertible,
so 0 is not an eigenvalue of T ∗T ! Consequently, 0 is not a singular value of
T .



2

5. Say {u1, . . . , um}, {v1, . . . , vn} are orthonormal basis of U and V respectively,
and σ1 > · · · > σm are the singular values of T . Let r = rank(T ) be the largest
number such that σr 6= 0. Let T+ ∈ L(V,U) be the unique linear transforma-
tion such that Tvi = 1

σi
ui for i 6 r, and Tvi = 0 for i > r. This is called the

pseudo-inverse of T . [Of course, T ∈ L(U, V ) need not be invertible. If T is invertible,

then T+ = T−1, as you see from (b) below. If T is not invertible, then T+ is the next best

thing to T−1 (as you also see from (b) below).]

(a) Show that T+T = I is the orthogonal projection of U onto ker(T )⊥.

Solution. Note first that ker(T ) = span{ur+1, . . . , um}. This is because if
T (
∑m
i=1 aiui) = 0, then

∑m
i=1 σiaivi = 0, which implies σiai = 0 for all

i 6 m, showing ai = 0 for all i 6 r. This will immediately show ker(T ) =
span{ur+1, . . . , um}. From this, it follows that ker(T )⊥ = span{u1, . . . , ur}.

Let P ∈ L(U, ker(T )⊥) be the orthogonal projection of P onto ker(T )⊥.
Observe that for i 6 r, T+T (ui) = T+(σivi) = ui = Pui. For i > r, then
T+T (ui) = T+(0) = 0 = Pui. Consequently, T+T and P are equal on
basis vectors, and hence, by linearity must be equal.

(b) Show that TT+ is the orthogonal projection of V onto im(T ).

Solution. Similar to the previous part.

(c) If T is injective, show T+ = (T ∗T )−1T ∗.

Solution. Let δi,j = 1 if i = j, and 0 if i 6= j. Then

σiδi,j = 〈Tui, vj〉 = 〈ui, T ∗vj〉

which forces T ∗vi = σiui.

Now let λi = σ2
i be the eigenvalues of (T ∗T ). If T is injective, T ∗T

is invertible, and λi 6= 0 for all i. Thus (T ∗T )−1(ui) = 1
λi
ui. And so

(T ∗T )−1Tvi = 1
λi
σiui = 1

σi
ui = T+ui. Thus (T ∗T )−1T and T+ are equal

on basis vectors, and hence, by linearity, must be equal.

(d) Suppose now A ∈ Mat(n,m,C) and T ∈ L(Cn, Cm) is given by multi-
plication with A. Let A = PΣQ∗ be the singular value decomposition
of A. Show that T+ is multiplication by the matrix QΣ+P ∗, where Σ+

is obtained by taking the reciprocal of all the non-zero entries in Σ, and
transposing the result.

Solution. This is exactly the matrix definition of T+. Computing what T+

does to columns of Q will immediately give the result.


