Homework Assignment 11

Assigned Fri 04/22. Due Fri 04/29.

- 1. Let V be an inner product space.
 - (a) If $U \subseteq V$ is a subspace, show that $U \subseteq (U^{\perp})^{\perp}$.
 - (b) If dim $(V) < \infty$, show that $U = (U^{\perp})^{\perp}$.
- 2. Suppose we want to find a line $y = c_0 + c_1 x$ that 'best fits' the points (0,0), (1,1), (1,2).
 - (a) If indeed there was a line that passed through the three points above, show that the coefficients c_0 and c_1 satisfy $A\begin{pmatrix}c_0\\c_1\end{pmatrix} = \vec{b}$, where $\vec{b} = \begin{pmatrix}0\\1\\2\end{pmatrix}$, and $A = \begin{pmatrix}1&0\\1&1\\1&1\end{pmatrix}$.
 - (b) With A and \vec{b} as above, show that the system $A\vec{x} = \vec{b}$ has no solutions.
 - (c) Let $\binom{c_0}{c_1}$ be the least square solution to $A\vec{x} = \vec{b}$. Sketch the line $y = c_0 + c_1 x$ and the points (0,0), (1,1), (1,2) on the same graph.
- 3. Let U, V be two finite dimensional inner product spaces, with inner products $\langle \cdot, \cdot \rangle_U$ and $\langle \cdot, \cdot \rangle_V$ respectively.
 - (a) If $T \in \mathcal{L}(U, V)$, show that there exists a unique $T^* \in \mathcal{L}(V, U)$ such that for all $u \in U, v \in V$, $\langle Tu, v \rangle_V = \langle u, T^*v \rangle_U$.
 - (b) Let $T \in \mathcal{L}(U, V)$. Show that $\ker(T^*) = \operatorname{im}(T)^{\perp}$, and $\operatorname{im}(T^*) = \ker(T)^{\perp}$.
 - (c) If $T \in \mathcal{L}(U, V)$ is injective, show that $T^*T \in \mathcal{L}(U, U)$ is invertible. Is $TT^* \in \mathcal{L}(V, V)$ invertible?
 - (d) Let $W \subseteq \mathbb{R}^n$ be a subspace, and $\{w_1, \ldots, w_m\} \subseteq W$ be a basis of W. Let $A \in Mat(n, m, \mathbb{R})$ be the matrix with w_1, \ldots, w_m as columns. Show that $P = A(A^tA)^{-1}A^t$ is the orthogonal projection of \mathbb{R}^n onto W. [You should also justify why A^tA is invertible. Note that given a basis of a subspace, this problem gives you an explicit formula for the orthogonal projection. However, computationally, this formula is about as much 'work' as using Gram-Schmidt first, and using the formula from class.]
- 4. Suppose dim $(V) < \infty$ is an inner product space over F, and $T \in \mathcal{L}(V, V)$. Suppose further there exists an orthonormal basis of V consisting of eigenvectors of T.
 - (a) If $F = \mathbb{C}$, show that $T^*T = TT^*$.
 - (b) If $F = \mathbb{R}$, show that $T^* = T$.
- 5. Let $F = \mathbb{R}$, and V be an inner-product space. Recall $T \in \mathcal{L}(V, V)$ is orthogonal if $\langle Tu, Tv \rangle = \langle u, v \rangle$ for all $u, v \in V$.
 - (a) Show that T is orthogonal if and only if ||Tu|| = ||u|| for all $u \in V$.
 - (b) Show that T is orthogonal if and only if $T^* = T^{-1}$.
 - (c) Let $V = \mathbb{R}^2$, $T \in \mathcal{L}(V, V)$ be orthogonal, and $B = \{e_1, e_2\}$ be the standard basis. Show that there exists $\theta \in [0, 2\pi)$ such that $\mathcal{M}_B(T) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ or $\mathcal{M}_B(T) = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$. [Elementary trigonometry now shows that the first matrix above is a rotation through angle θ , and the second is a reflection about line $y = \tan(\frac{\theta}{2})x$. Thus all orthogonal transformations on \mathbb{R}^2 are either rotations or reflections. The same is true in higher dimensions (and you know enough to prove this).]
- 6. Let $A \in \operatorname{Mat}(n, n, \mathbb{C})$. We define $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$. Show that $\det(e^A) = e^{\operatorname{tr}(A)}$. [Note: An elementary application of the comparison test will quickly show that the series $\sum_{k=0}^{\infty} \frac{1}{k!} A^k$ converges (absolutely) for any matrix A. For this question, you needn't worry about issues of convergence. The hint is as follows: First check this for diagonal matrices. Next compute what $e^{P^{-1}AP}$ is in terms of P and e^A . Now if your matrix A was diagonalizable, you should have a quick proof. The proof of the general case will follow using the same

idea and question 3 from the previous homework. As a general remark $-e^A$ is called the *matrix exponential*, and is extremely useful in solving ODE's. Proving this question using the 'expansion by minors' formula for the determinant is doomed to failure, but the decomposition of V into (generalized) eigenspaces quickly gives the desired result.]