Homework Assignment 1

Assigned Mon 01/10. Due Fri 01/14.

1. Suppose F (with binary operations,$+ \cdot$) is some field, and assume all quantities referenced in this problem are elements of F. Do this problem using only the basic field axioms.
(a) Show that the additive (and multiplicative) identity in a field is unique. [To help you get started, here's what you should do: Suppose 0 and 0^{\prime} were two (additive) identities. Show that $0=0^{\prime}$.]
(b) Show that $-a=(-1) a$. [To explain the notation, the left hand side is the additive inverse of a. The right hand side is the additive inverse of 1 multiplied by a.]
(c) If $a \neq 0$, and $a b=a c$ then show $b=c$.
(d) Show that $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$, provided $b, d \neq 0$. [We define $\frac{a}{b}=a \cdot b^{-1}$, where b^{-1} is the (unique) multiplicative inverse of b.]
2. Suppose the set $F=\{0,1, \alpha, \beta\}$ with binary operations + and \cdot form a field. Construct the addition and multiplication for F (i.e. draw two tables - one showing how to add all possible pairs of elements in F, and the other showing how to multiply all possible pairs of elements in F). [It turns out that there is exactly one way to do this. You don't have to justify your steps or work for this question. Just the final answer will suffice.]
3. Let F be a field, and $n \in \mathbb{N}$. We define $n!\in F$ by

$$
n!=\underbrace{(1+1+\cdots+1)}_{n \text {-times }}(n-1)!
$$

and $0!=1$. Notice that the standard definition $n!=n(n-1)!$ can't really be used here, since there is no reason for any given natural number n to be an element of the filed F. However, no matter what the field F is, we are guaranteed $1 \in F$, so our definition makes sense (and further $n!\in F$). Now if $n, m \in \mathbb{N}$ with $m \leqslant n$, we define the binomial coefficient $\binom{n}{m}$ by $\binom{n}{m}=\frac{n!}{m!(n-m)!} \in F$. If $a, b \in F$ and $n \in \mathbb{N}$ show that

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Here we use the convention that for any $a \in F, n \in \mathbb{N}, a^{n}=\underbrace{a \cdot a \cdots a}_{n \text {-times }}$, and $a^{0}=1$ by definition.
4. (a) Suppose F is a field with an even number of elements (i.e. the cardinality of the set F is both finite and even). Show that $1+1=0$ in F. [Hint: Show first that $\exists a \in F$ such that $a \neq 0$ and $a+a=0$.]
(b) Suppose now F is a field with an odd number of elements. Show that $1+1 \neq 0$ in F.
[*] 5. (Optional. Do, but don't turn this in. Read the policy on optional HW for more info.)
(a) Suppose F is a finite set, and that + ,. are two binary operations on F which satisfy all the field axioms except (possibly) the existence of multiplicative inverses. Suppose further, $\forall a, b \in F, a b=0$ implies that $a=0$ or $b=0$. Show that F must in fact be a field.
(b) Let p be prime, and $F=\{0,1, \ldots, p-1\}$. Define + and \cdot to be addition and multiplication (respectively) modulo p. (That is, for $a, b \in F$ define $a+b$ to be the remainder of the sum of a and b when divided by p.) Show that F is a field. [The only field axiom you should explicitly check is the existence of multiplicative inverses.]

