21341 Linear Algebra: Final.

Thu 05/05, 2011

- This is a closed book test. No calculators or computational aids are allowed.
- You have 3 hours. The exam has a total of 9 questions and 90 points.
- You may use without proof any result that has been proved in class or on the homework, provided you **CLEARLY** state the result you are using.
- For computational questions, I strongly recommend you show all your work. This way, a computational error leading to the wrong answer will receive partial credit for correct steps.
- The questions are roughly in what I perceive as increasing difficulty. They are not in the order material was covered. Good luck.

In this exam, we always assume V is a vector space over a field F.

- 10 1. Let $A = \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix}$. Compute the eigenvalues and singular values of A. [Of course, if A is normal, then the singular values are exactly the absolute value of the eigenvalues of A. But it's not true in general as you should see from this question.]
- 10 2. Let V be a vector space, and $U \subseteq V$ be a subspace. Suppose $\{u_1, \ldots, u_k\} \subseteq U$ is linearly independent and $u_{k+1} \notin U$ then must $\{u_1, \ldots, u_{k+1}\}$ be linearly independent? Prove, or provide a counter example.
- 10 3. State if the following are true or false (no justification is required). A correct answer will get full credit, a blank answer will get half credit, and an incorrect answer will get no credit.
 - (a) Any n + 1 distinct vectors in an n dimensional vector space are necessarily spanning.
 - (b) Let A, B be two linearly independent sets. True or false: $A \cup B$ is necessarily linearly independent?
 - (c) Let $f, g \in P_F(x)$ be two polynomials with $g \neq 0$. We know there exist $q, r \in P_F(x)$ such that f = qg + r and $\deg(r) < \deg(g)$. True or false: For a given f and g, the q and r with the above properties are unique?
 - (d) Let $F = \mathbb{C}$, dim $(V) < \infty$, and $T \in \mathcal{L}(V, V)$ be such that (T 3I)(T 4I)(T I) = 0. True or false: T is necessarily diagonalizable.
 - (e) Let V be an inner product space, $U \subseteq V$ a subspace, and $P \in \mathcal{L}(V, U)$ be the orthogonal projection of V onto U. True or false: P is diagonalizable?
- 10 4. Let $F = \mathbb{R}$. Let $U = \operatorname{span}\{\begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}\}$, and $V = \operatorname{span}\{\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 2\\ 1 \end{pmatrix}\}$ be two subspaces of \mathbb{R}^3 . Find a basis of $U \cap V$.
- 10 5. Let V be a finite dimensional inner product space, $U \subseteq V$ be a subspace, and $P \in \mathcal{L}(V, U)$ be the orthogonal projection of V onto U. Show that $P^* = P$.
- 10 6. Let $F = \mathbb{R}$. Does there exist $A \in Mat(4,3,\mathbb{R})$ and $B \in Mat(3,4,\mathbb{R})$ such that AB = I, where I is the 4×4 identity matrix. If yes, find A and B. If no, prove they don't exist.

7. Let V be a finite dimensional vector space over a field F. Suppose for some $\lambda \in F$

$$\{0\} \subsetneq \ker(T - \lambda I) \subsetneq \ker(T - \lambda I)^2$$

Show that there exist $v_1, v_2 \in V$ such that

 $Tv_1 = \lambda v_1$ and $Tv_2 = \lambda v_2 + v_1$.

[Recall $A \subsetneq B$ means that A is a proper subset of B. Also, despite the similarity to your evil 'double' homework #10, this problem can be done directly and independent of the homework. In fact, if you resort to using HW #10, you're probably on the wrong track...]

- 10 8. Let V be a finite dimensional inner product space. Suppose $T \in \mathcal{L}(V, V)$ is invertible. Show that there exists c > 0 such that for all $v \in V$, $||Tv|| \ge c ||v||$.
- 9. Let V be a finite dimensional vector space over \mathbb{C} . Suppose $S,T \in \mathcal{L}(V,V)$ are such that 10 ST = TS. Let $\lambda \in \mathbb{C}$ be an eigenvalue of S. Show that there exists $\mu \in \mathbb{C}$ and $v \in V$ with $v \neq 0$, such that both

$$Sv = \lambda v$$
 and $Tv = \mu v$

10