21341 Linear Algebra: Final.

Thu 05/05, 2011

- This is a closed book test. No calculators or computational aids are allowed.
- You have 3 hours. The exam has a total of 9 questions and 90 points.
- You may use without proof any result that has been proved in class or on the homework, provided you CLEARLY state the result you are using.
- For computational questions, I strongly recommend you show all your work. This way, a computational error leading to the wrong answer will receive partial credit for correct steps.
- The questions are roughly in what I perceive as increasing difficulty. They are not in the order material was covered. Good luck.

In this exam, we always assume V is a vector space over a field F.

1. Let $A=\left(\begin{array}{cc}3 & 4 \\ 0 & 0\end{array}\right)$. Compute the eigenvalues and singular values of A. [Of course, if A is normal, then the singular values are exactly the absolute value of the eigenvalues of A. But it's not true in general as you should see from this question.]

10 2. Let V be a vector space, and $U \subseteq V$ be a subspace. Suppose $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq U$ is linearly independent and $u_{k+1} \notin U$ then must $\left\{u_{1}, \ldots, u_{k+1}\right\}$ be linearly independent? Prove, or provide a counter example.

10 3. State if the following are true or false (no justification is required). A correct answer will get full credit, a blank answer will get half credit, and an incorrect answer will get no credit.
(a) Any $n+1$ distinct vectors in an n dimensional vector space are necessarily spanning.
(b) Let A, B be two linearly independent sets. True or false: $A \cup B$ is necessarily linearly independent?
(c) Let $f, g \in P_{F}(x)$ be two polynomials with $g \neq 0$. We know there exist $q, r \in P_{F}(x)$ such that $f=q g+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$. True or false: For a given f and g, the q and r with the above properties are unique?
(d) Let $F=\mathbb{C}, \operatorname{dim}(V)<\infty$, and $T \in \mathcal{L}(V, V)$ be such that $(T-3 I)(T-4 I)(T-I)=0$. True or false: T is necessarily diagonalizable.
(e) Let V be an inner product space, $U \subseteq V$ a subspace, and $P \in \mathcal{L}(V, U)$ be the orthogonal projection of V onto U. True or false: P is diagonalizable?

10 4. Let $F=\mathbb{R}$. Let $U=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right\}$, and $V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\binom{0}{2}\right\}$ be two subspaces of \mathbb{R}^{3}. Find a basis of $U \cap V$.

10 5. Let V be a finite dimensional inner product space, $U \subseteq V$ be a subspace, and $P \in \mathcal{L}(V, U)$ be the orthogonal projection of V onto U. Show that $P^{*}=P$.

10 6. Let $F=\mathbb{R}$. Does there exist $A \in \operatorname{Mat}(4,3, \mathbb{R})$ and $B \in \operatorname{Mat}(3,4, \mathbb{R})$ such that $A B=I$, where I is the 4×4 identity matrix. If yes, find A and B. If no, prove they don't exist.

10 7. Let V be a finite dimensional vector space over a field F. Suppose for some $\lambda \in F$

$$
\{0\} \subsetneq \operatorname{ker}(T-\lambda I) \subsetneq \operatorname{ker}(T-\lambda I)^{2}
$$

Show that there exist $v_{1}, v_{2} \in V$ such that

$$
T v_{1}=\lambda v_{1} \quad \text { and } \quad T v_{2}=\lambda v_{2}+v_{1} .
$$

[Recall $A \subsetneq B$ means that A is a proper subset of B. Also, despite the similarity to your evil 'double' homework $\# 10$, this problem can be done directly and independent of the homework. In fact, if you resort to using HW $\# 10$, you're probably on the wrong track. ..]

10 8. Let V be a finite dimensional inner product space. Suppose $T \in \mathcal{L}(V, V)$ is invertible. Show that there exists $c>0$ such that for all $v \in V,\|T v\| \geqslant c\|v\|$.

10 9. Let V be a finite dimensional vector space over \mathbb{C}. Suppose $S, T \in \mathcal{L}(V, V)$ are such that $S T=T S$. Let $\lambda \in \mathbb{C}$ be an eigenvalue of S. Show that there exists $\mu \in \mathbb{C}$ and $v \in V$ with $v \neq 0$, such that both

$$
S v=\lambda v \quad \text { and } \quad T v=\mu v
$$

