Math 341 - Linear algebra

FINAL EXAM

Monday Dec. 13, 2010

1. (2/100) Name:

2. (10/100) Suppose that V is a vector space with **complex** inner product \langle , \rangle . Prove that for all $v, w \in V$

$$\langle v, w \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k ||v + i^k w||^2,$$

where *i* is the imaginary constant $(i^2 = -1)$.

- 3. Suppose that $V = \mathbb{R}^3$. Consider V as a real inner product space with the dot product in \mathbb{R}^3 and let $W = S\left(\begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}\right)$.
 - (a) (15/100) Let T be the orthogonal projection onto W. Find an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors of T. *Hint:* To answer this question it is not necessary to consider the characteristic polynomial of the matrix of the transformation.

(b) (5/100) Let T be as in (a). Evaluate
$$T\left(\begin{pmatrix}1\\-1\\1\end{pmatrix}\right)$$

(c) (5/100) Evaluate $D(\mathcal{M}(T, B, B))$, with T as before and B the standard basis of \mathbb{R}^3 . *Hint:* No calculations are needed to answer this question.

4. Define $T \in \mathcal{L}(P_1(\mathbb{R}), \mathbb{R})$ by

$$T(p) = p(0) + p'(0)$$

(where p' denotes the derivative of p). Suppose that we define the following real inner product in $P_1(\mathbb{R})$,

$$\langle p,q\rangle = \int_{-1}^{1} p(x)q(x) \, dx.$$

(a) (10/50) Find a polynomial $h \in P_1(\mathbb{R})$ such that $T(p) = \langle p, h \rangle$ for all $p \in P_1(\mathbb{R})$. *Hint:* It is enough to have that $T(1) = \langle 1, h \rangle$ and $T(x) = \langle x, h \rangle$.

(b) (3/50) Prove that the answer that you found in part (a) is unique.

5. Let $\theta \in [0, 2\pi)$ be arbitrary an consider the matrix

$$A = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$

(a) (8/100) Find the eigenvalues of A. Hint: Recall that $\cos^2 \theta + \sin^2 \theta = 1$.

(b) (2/100) As a matrix with complex entries, is A diagonalizable? Justify your answer.

- 6. Determine whether the following statements are true and false. No justification is required. Each correct answer is worth five points, each blank answer is 3 points, and each incorrect answer is worth zero points.
 - (a) (5/100) If V is a finite dimensional inner product space, $v \in V$, $v \neq 0$ and

$$W = \{ w \in V : \langle w, v \rangle = 0 \}.$$

Then

.

dim
$$W = \dim V - 1$$
.

(b) (5/100) If V is an inner product space, U is a subspace of V and T is the orthogonal projection onto U then $(Id_V - T)$ is the orthogonal projection onto U^{\perp} .

(c) (5/100) If A is an $n \times n$ matrix with real entries such that $A^n = I_n$ (the identity matrix) then D(A) = 1.

(d) (5/100) If V is a finite dimensional inner product space and U is invariant under $T \in \mathcal{L}(V, V)$, then U^{\perp} is invariant under T.

7. (10/100) Prove that if $T \in \mathcal{L}(V, V)$ is a normal operator (i.e. $T^*T = TT^*$) then $N(T) = N(T^*)$. *Hint:* Show first that $||Tx|| = ||T^*x||$ for all $x \in V$.

8. (10/100) Suppose that V is a finite dimensional complex vector space, $T \in \mathcal{L}(V, V)$ and 0 is the only eigenvalue of T. Prove that if $n = \dim V$ then $T^n \equiv 0$. *Hint:* Use the Triangular Form Theorem.