Math 341 - Linear algebra

FINAL EXAM

Monday Dec. 13, 2010

1. $(2 / 100)$ Name:
2. (10/100) Suppose that V is a vector space with complex inner product \langle,$\rangle . Prove that for all v, w \in V$

$$
\langle v, w\rangle=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|v+i^{k} w\right\|^{2},
$$

where i is the imaginary constant $\left(i^{2}=-1\right)$.
3. Suppose that $V=\mathbb{R}^{3}$. Consider V as a real inner product space with the dot product in \mathbb{R}^{3} and let $W=S\left(\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right)$.
(a) $(15 / 100)$ Let T be the orthogonal projection onto W. Find an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of T. Hint: To answer this question it is not necessary to consider the characteristic polynomial of the matrix of the transformation.
(b) $(5 / 100)$ Let T be as in (a). Evaluate $T\left(\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right)$
(c) (5/100) Evaluate $D(\mathcal{M}(T, B, B))$, with T as before and B the standard basis of \mathbb{R}^{3}. Hint: No calculations are needed to answer this question.
4. Define $T \in \mathcal{L}\left(P_{1}(\mathbb{R}), \mathbb{R}\right)$ by

$$
T(p)=p(0)+p^{\prime}(0)
$$

(where p^{\prime} denotes the derivative of p). Suppose that we define the following real inner product in $P_{1}(\mathbb{R})$,

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

(a) (10/50) Find a polynomial $h \in P_{1}(\mathbb{R})$ such that $T(p)=\langle p, h\rangle$ for all $p \in P_{1}(\mathbb{R})$. Hint: It is enough to have that $T(1)=\langle 1, h\rangle$ and $T(x)=\langle x, h\rangle$.
(b) $(3 / 50)$ Prove that the answer that you found in part (a) is unique.
5. Let $\theta \in[0,2 \pi)$ be arbitrary an consider the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(a) $(8 / 100)$ Find the eigenvalues of A. Hint: Recall that $\cos ^{2} \theta+\sin ^{2} \theta=1$.
(b) $(2 / 100)$ As a matrix with complex entries, is A diagonalizable? Justify your answer.
6. Determine whether the following statements are true and false. No justification is required. Each correct answer is worth five points, each blank answer is 3 points, and each incorrect answer is worth zero points.
(a) $(5 / 100)$ If V is a finite dimensional inner product space, $v \in V, v \neq 0$ and

$$
W=\{w \in V:\langle w, v\rangle=0\} .
$$

Then

$$
\operatorname{dim} W=\operatorname{dim} V-1
$$

(b) $(5 / 100)$ If V is an inner product space, U is a subspace of V and T is the orthogonal projection onto U then $\left(I d_{V}-T\right)$ is the orthogonal projection onto U^{\perp}.
(c) $(5 / 100)$ If A is an $n \times n$ matrix with real entries such that $A^{n}=I_{n}$ (the identity matrix) then $D(A)=1$.
(d) $(5 / 100)$ If V is a finite dimensional inner product space and U is invariant under $T \in \mathcal{L}(V, V)$, then U^{\perp} is invariant under T.
7. (10/100) Prove that if $T \in \mathcal{L}(V, V)$ is a normal operator (i.e. $\left.T^{*} T=T T^{*}\right)$ then $N(T)=N\left(T^{*}\right)$. Hint: Show first that $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in V$.
8. (10/100) Suppose that V is a finite dimensional complex vector space, $T \in \mathcal{L}(V, V)$ and 0 is the only eigenvalue of T. Prove that if $n=\operatorname{dim} V$ then $T^{n} \equiv 0$. Hint: Use the Triangular Form Theorem.

