Math 341 Midterm 2.

Wed, Oct 28, 2009
Time: 50 mins
Total: 60 points

This is a closed book test, and your are not allowed to use calculators or other computational aids. You may use any result from class/homework provided you make an appropriate reference, unless you have been explicitly forbidden from using it. Good luck \because
5. Let F be a field, and U, V be two finite dimensional vector spaces over F. If $\operatorname{dim}(U)>\operatorname{dim}(V)$, and $T \in \mathcal{L}(U, V)$ then show that T is not be injective. [Recall 'injective' is the same as 'one-to-one'.]

The next question is a little 'trickier' than the others. It is possible to get an ' A ' on this exam without doing the next question, so I'd recommend attempting this question only if you're convinced you've done all the previous questions to the best of your ability.
6. Let V be a finite dimensional vector space over \mathbb{R}, and \langle,$\rangle be an inner product on V$. If $T \in \mathcal{L}(V, \mathbb{R})$, show that there exists $u_{0} \in V$ such that for all $v \in V, T(v)=\left\langle u_{0}, v\right\rangle$. [To remind you: We think of \mathbb{R} as a (one dimensional) vector space over the field \mathbb{R}, and $T \in \mathcal{L}(V, \mathbb{R})$ means $T: V \rightarrow \mathbb{R}$ is a linear transformation.]

