
A note on the existence of determinants.

Since I ran out of time when finishing this proof in class today, I’m writing it up. (I think I might
also have hurriedly switched an i and a k in class.)

Let F be a field, and recall, we defined the determinant as follows:

(1) For n = 1, we define D : (F 1)1 → F by D(α) = α.
(2) For n > 1, we assume we have already defined a determinant D : (Fn−1)n−1 → F satisfying

the axioms. We now define D : (Fn)n → F as follows: Let v1, . . . , vn ∈ Fn, and let ai,j ∈ F

be such that vj =
∑

i ai,jei. Let v′
1, . . . , v

′
n be the vectors v1, . . . , vn (respectively) with each

of their first coordinates deleted. Explicitly, v′
i =

( a2,i

...
an,i

)

.

Then we define D(v1, . . . vn) by

D(v1, . . . , vn) =

n∑

j=1

(−1)1+ja1,jD(v′
1, . . . ,

v′

j omitted

︷ ︸︸ ︷

v′
j−1, v

′
j+1, . . . v

′
n)

Note that on the right hand side, each of the vectors have n − 1 coordinates. Also in the jth

term, D only has n − 1 arguments, since we omit vj . Thus the right hand side only involves
using D : (Fn−1)n−1 → F , which we have (inductively) assumed exists.

Remark 1. The definition given above is called the expansion about the first row. If you look at the
proof, you’ll see that we can just as well expand about any other row. Indeed, if you pick any i, and
define Pi ∈ L(Fn, Fn−1) to be the transformation that ‘deletes’ the ith coordinate of v. Now the
determinant expansion about the ith row will read

D(v1, . . . , vn) =
n∑

j=1

(−1)i+jai,jD(Piv1, . . . ,

Pvj omitted
︷ ︸︸ ︷

Pivj−1, Pivj+1, . . . Pivn).

Now the proof showing that D defined by expanding about the first row is a determinant is almost
identical to the proof showing D defined by expanding about the ith row is a determinant. The only
place there is a minor difference in the proofs is checking D(e1, . . . , en) = 1, but that’s easy enough.
Thus, by uniqueness of determinants, expanding the determinant about any row gives the same answer.
We’ll eventually see that you can do this about any column too.

Now to prove that the function D above is a determinant, we need to check that it maps the identity
to 1, scales linearly if any argument is scaled, and remains unchanged if one argument is replaced with
the sum of itself and another one. We will instead check that D satisfies the following properties:

(1) D(e1, . . . , en) = 1
(2) ∀α ∈ F , D(αv1, v2, . . . , vn) = αD(v1, . . . , vn).
(3) D(v1 + v2, v2, . . . , vn) = D(v1, . . . vn).
(4) (Swaps) ∀i < k, we have

D(v1, . . . ,

vk in ith position
︷ ︸︸ ︷
vi−1, vk, vi+1, . . . ,

vi in kth position
︷ ︸︸ ︷
vk−1, vi, vk+1, . . . vn) = −D(v1, . . . , vn).

Note the difference between the above list, and the standard axioms: The standard axioms allow
you to scale any argument, not only the first, as assumed above. The standard axioms also allow you
to add any argument to any other argument, not only the second one to the first one, as assumed
above. However, the last property above states that swapping arguments introduces a minus sign, and
so, with the assumptions above we can immediately prove that scaling any argument (not just the
first), scales the entire determinant by the same factor. Similarly we can use the above properties to
prove that adding any argument to any other argument does not change the determinant.

Now the first three properties were proved in class. Here’s a proof of the last one.
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Proof that swapping arguments introduces a negative sign. Assume as above vj =
∑

i ai,jei. Now, by
definition of D we have

(1) D(v1, . . . ,

vk in ith position
︷ ︸︸ ︷
vi−1, vk, vi+1, . . . ,

vi in kth position
︷ ︸︸ ︷
vk−1, vi, vk+1, . . . vn)

=
∑

j 6=i,k

(−1)1+ja1,jD(v′
1, . . . ,

v′

k in ith position
︷ ︸︸ ︷

v′
i−1, v

′
k, v′

i+1, . . . ,

v′

i in kth position
︷ ︸︸ ︷

v′
k−1, v

′
i, v

′
k+1, . . . ,

v′

j omitted

︷ ︸︸ ︷

v′
j−1, v

′
j+1, . . . , v

′
n)

+ (−1)1+ia1,kD(v′
1, . . . , v

′
i−1, v

′
i+1

︸ ︷︷ ︸

v′

k in ith position omitted

, . . . ,

v′

i in kth position
︷ ︸︸ ︷

v′
k−1, v

′
i, v

′
k+1, . . . , v

′
n)

+ (−1)1+ka1,iD(v′
1, . . . ,

v′

k in ith position
︷ ︸︸ ︷

v′
i−1, v

′
k, v′

i+1, . . . , v
′
k−1, v

′
k+1

︸ ︷︷ ︸

v′

i in kth position omitted

, . . . , v′n)

Now note that by the inductive hypothesis, swapping arguments of D on the right hand side intro-
duces a negative sign. Thus we have

∑

j 6=i,k

(−1)1+ja1,jD(v′
1, . . . ,

v′

k in ith position
︷ ︸︸ ︷

v′
i−1, v

′
k, v′

i+1, . . . ,

v′

i in kth position
︷ ︸︸ ︷

v′
k−1, v

′
i, v

′
k+1, . . . ,

v′

j omitted

︷ ︸︸ ︷

v′
j−1, v

′
j+1, . . . , v

′
n)

= −

∑

j 6=i,k

(−1)1+ja1,jD(v′
1, . . . ,

v′

i in ith position
︷ ︸︸ ︷

v′
i−1, v

′
i, v

′
i+1, . . . ,

v′

k in kth position
︷ ︸︸ ︷

v′
k−1, v

′
k, v′

k+1, . . . ,

v′

j omitted

︷ ︸︸ ︷

v′
j−1, v

′
j+1, . . . , v

′
n)

= −

∑

j 6=i,k

(−1)1+ja1,jD(v′
1, . . . ,

v′

j omitted

︷ ︸︸ ︷

v′
j−1, v

′
j+1, . . . , v

′
n)

For the term

D(v′
1, . . . , v

′
i−1, v

′
i+1

︸ ︷︷ ︸

v′

k in ith position omitted

, . . . ,

v′

i in kth position
︷ ︸︸ ︷

v′
k−1, v

′
i, v

′
k+1, . . . , v

′
n)

we note that v′
k never occurs as an argument, and that v′

i is ‘out of place’. Swapping v′
i with it’s

previous argument (k − 1) − (i + 1) − 1 times will put it ‘back in place’. Thus

D(v′
1, . . . , v

′
i−1, v

′
i+1

︸ ︷︷ ︸

v′

k in ith position omitted

, . . . ,

v′

i in kth position
︷ ︸︸ ︷

v′
k−1, v

′
i, v

′
k+1, . . . , v

′
n)

= (−1)k−i−3D(v′
1, . . . ,

v′

i in ith position
︷ ︸︸ ︷

v′
i−1, v

′
i, v

′
i+1, . . . , v

′
k−1, v

′
k+1

︸ ︷︷ ︸

v′

k in kth position omitted

, . . . , v′n)

= −(−1)k−iD(v′
1, . . . , v

′
k−1, v

′
k+1

︸ ︷︷ ︸

v′

k in kth position omitted

, . . . , v′n)
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Similarly for the last term on the right of equation (1), swapping v′
k with it’s next argument

(k − 1) − (i + 1) − 1 times will put it in the kth position. Thus

D(v′
1, . . . ,

v′

k in ith position
︷ ︸︸ ︷

v′
i−1, v

′
k, v′

i+1, . . . , v
′
k−1, v

′
k+1

︸ ︷︷ ︸

v′

i in kth position omitted

, . . . , v′n) = −(−1)k−iD(v′
1, . . . , v

′
i−1, v

′
i+1

︸ ︷︷ ︸

v′

i in ith position omitted

, . . . , v′n)

Finally collecting all these simplified expressions and substituting back in (1) gives

D(v1, . . . ,

vk in ith position
︷ ︸︸ ︷
vi−1, vk, vi+1, . . . ,

vi in kth position
︷ ︸︸ ︷
vk−1, vi, vk+1, . . . vn)

= −

∑

j 6=i,k

(−1)1+ja1,jD(v′
1, . . . ,

v′

j omitted

︷ ︸︸ ︷

v′
j−1, v

′
j+1, . . . , v

′
n)

− (−1)1+ia1,k(−1)k−iD(v′
1, . . . , v

′
k−1, v

′
k+1

︸ ︷︷ ︸

v′

k in kth position omitted

, . . . , v′n)

− (−1)1+ka1,i(−1)k−iD(v′
1, . . . , v

′
i−1, v

′
i+1

︸ ︷︷ ︸

v′

i in ith position omitted

, . . . , v′n)

Since (−1)1+2k−i = (−1)1+i, the right hand side of the above reduces exactly to −D(v1, . . . , vn),
finishing the proof. ¤


