Math 341 Syllabus and Lecture schedule.

Gautam Iyer, Fall 2009

L1, Mon. 8/24.	- Introduction \& motivation - Fields - Definition. - Uniqueness of inverses. Inverse of inverses.
L2, Wed. 8/26.	- Multiplication by $0 .(-a)(-b)=a b$, etc. - Examples. $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Q}(\sqrt{2})$, etc. (Also some non-examples like \mathbb{Z}).
L3, Fri. 8/28.	- Vector spaces - Definition. - Examples: 0, \mathbb{R}^{n}, F^{n}, function spaces.
L4, Mon. 8/31.	- Remark that 'head-to-toe' addition is the same as coordinate addition in \mathbb{R}^{2}. - Subspaces. Definition and examples. (Some examples of subspaces in function spaces). - Define $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.
L5, Wed. 9/2.	* Check $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is a subspace. * $U \subseteq V$ a subspace $\& u_{1}, \ldots u_{n} \in U$ then $\operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\} \subseteq U$. * $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is the smallest subspace containing v_{1}, \ldots, v_{n}. * Span of infinite sets.
L6, Fri. 9/4.	- Linear dependence / independence. * Example in \mathbb{R}^{3}. * $\{u, v\}$ L.D. $\Longleftrightarrow u=\lambda v$ or $v=\lambda u$. - Basis.
L7, Wed. 9/9.	* Definition, Examples. Canonical basis in F^{n}. * Any $n+1$ vectors in $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ are L.D. * Any two (finite) basis of V have the same cardinality, and define dimension.
L8, Fri. 9/9.	* Basis of the zero vector space. * S is L.I. $\Longleftrightarrow \forall s \in S, s \notin \operatorname{span}(S-\{s\})$. * If $u \in \operatorname{span}(S)$, then $\operatorname{span}(S \cap\{u\})=\operatorname{span}(S)$.
L9, Mon. 9/14.	* Any spanning set contains a basis. * Any L.I. set can be extended to a basis. * Dimension counting (e.g. $\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)$.) $*$ maximal L.I. \Longleftrightarrow minimal spanning \Longleftrightarrow basis (On homework)
L10, Wed. 9/16.	* Row reduction, and explicitly finding basis from spanning sets.
L11, Fri. 9/18.	- Linear equations. * Reduced echelon form.
L12, Mon 9/21.	* Row rank, dimension of the solution space. * The inhomogeneous case (on homework).
L13, Fri 9/25.	- Linear Transformations. - Definitions, examples. - $\mathcal{L}(U, V)$ is a vector space.
L14, Mon 9/28.	- Closure of $\mathcal{L}(U, U)$ under composition - Associativity, non-commutativity, etc. - Identity, inverse.
L15, Wed 9/30.	- $T: U \rightarrow V$ linear and bijective $\Longrightarrow T^{-1}$ is linear. - Isomorphisms - $T \in \mathcal{L}(U, V)$ injective $\Longleftrightarrow \operatorname{ker}(T)=\{0\}$.
L16, Fri 10/2.	- $\operatorname{Im}(T)$ is a subspace

- Rank Nullity theorem.

L25, Mon 10/26. $\quad-T \in L(V, V)$ orthogonal \Longleftrightarrow there exists an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$

L28, Wed 11/4. - Computing by column operations. If v_{1}, \ldots, v_{n} are L.I., then reduce v_{1}, \ldots, v_{n}

L17, Mon 10/5.

L18, Wed 10/7.
L19, Fri 10/9. L20, Mon 10/12.

L21, Wed 10/14.
L22, Mon 10/19.
L23, Wed 10/21.
L24, Fri 10/23.

L26, Fri 10/30.

L27, Mon 11/2.

L29, Fri 11/6.

L30, Mon 11/9.

L31, Wed 11/11.

- Coordinates with respect to arbitrary basis.
- Matrix representation of linear transformation.
$-(S T)_{B}=(S)_{B}(T)_{B}$
- Basis change matrix, and relation of columns to the resp. basis vectors.
- Basis change for linear transformations. $(T)_{C}=S_{C \rightarrow B}^{-1}(T)_{B} S_{C \rightarrow B}$
- Elementary matrices, and row operations through products.
- Inner products
- Definition, examples.
- Cosine rule $\Longleftrightarrow\langle x, y\rangle=\|x\|\|y\| \cos \alpha$ in \mathbb{R}^{2}.
- Inner product on \mathbb{R}^{n}.
- Lengths. Cauchy-Schwartz, triangle inequality.
- Orthonormal basis. Linear independence and coordinates.
- Gram-Schmidt.
- Orthogonal transformations.
- $T \in L(V, V)$ orthogonal $\Longleftrightarrow\|x\|=\|T x\|$ for all $x \in V$.
- An $n \times n$ matrix is orthogonal \Longleftrightarrow the columns form an Orthonormal basis \Longleftrightarrow rows form an orthonormal basis $\Longleftrightarrow A^{\mathrm{t}} A=I$. such that $\left\{T u_{1}, \ldots, T u_{n}\right\}$ is an orthonormal basis \Longleftrightarrow there exists an orthonormal basis $B=\left\{u_{1}, \ldots, u_{n}\right\}$ such that $(T)_{B}^{\mathrm{t}}(T)_{B}=I$.
- Rotation matrices in \mathbb{R}^{2}.
- Reflection matrices in \mathbb{R}^{2}, and classification of all orthogonal 2×2 matrices.
- Determinants
- Definition of the determinant function $D:\left(F^{n}\right)^{n} \rightarrow F$.
- Swaps: $D\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots, v_{n}\right)=-D\left(v_{1}, \ldots, v_{n}\right)$ for $i \neq j$.
- $D\left(v_{1}, \ldots, v_{i-1}, v_{i}+\sum_{j \neq i} \alpha_{j} v_{j}, v_{i+1}, \ldots v_{n}\right)=D\left(v_{1}, \ldots, v_{n}\right)$.
- v_{1}, \ldots, v_{n} linearly dependent implies $D\left(v_{1}, \ldots, v_{n}\right)=0$.
- Multi-linearity: $D\left(v_{1}, \ldots, v_{i-1}, v_{i}^{\prime}+v_{i}^{\prime \prime}, v_{i+1}, \ldots, v_{n}\right)=$ $D\left(v_{1}, \ldots, v_{i-1}, v_{i}^{\prime}, v_{i+1}, \ldots, v_{n}\right)+D\left(v_{1}, \ldots, v_{i-1}, v_{i}^{\prime \prime}, v_{i+1}, \ldots, v_{n}\right)$ to e_{1}, \ldots, e_{n} using elementary column operations. Then $D\left(v_{1}, \ldots, v_{n}\right)=$ $(-1)^{\text {\# swaps }} /$ product of all factors you scale by.
- Uniqueness: D, D^{\prime} two functions satisfying the axioms then $D=D^{\prime}$.
- Existence: Define v^{\prime} to be the vector v with first coordinate deleted. Let $v_{j}=\sum_{i} a_{i j} e_{i}$, and define (inductively)

$$
D\left(v_{1}, \ldots, v_{n}\right)=\sum_{j=1}^{n}(-1)^{1+j} a_{1, j} D\left(v_{1}^{\prime}, \ldots, v_{j-1}^{\prime}, v_{j+1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

Prove D satisfies axioms as follows:

* Show $D\left(e_{1}, \ldots, e_{n}\right)=1$.
* Show $D\left(\alpha v_{1}, v_{2}, \ldots, v_{n}\right)=\alpha D\left(v_{1}, \ldots, v_{n}\right)$.
* Show $D\left(v_{1}+v_{2}, v_{2}, \ldots, v_{n}\right)=\alpha D\left(v_{1}, \ldots, v_{n}\right)$. * Show swaps: $D\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{n}\right)=-D\left(v_{1}, \ldots, v_{n}\right)$ for $i \neq j$.
- $A=\left(a_{i, j}\right) . \quad C_{i, j}=A$ with $i^{\text {th }}$ row and $j^{\text {th }}$ column deleted. Show $|A|=$ $\sum_{j}(-1)^{i+j} a_{i, j}\left|C_{i, j}\right|$ for any i.
- Show properties of $|A|$ with respect to row operations.
- Show $|A|=\sum_{i}(-1)^{i+j} a_{i, j}\left|C_{i, j}\right|$ for any j.
$-|A|=0 \Longleftrightarrow A$ is not invertible.
- Show $|A B|=|A||B|$.

L33, Mon 11/16. $\quad-T$ is diagonalisable if there exists a basis of V consisting of eigenvectors of T

L32, Fri 11/13.

L34, Wed 11/18.

L35, Fri 11/20.

L36, Mon 11/23.

- Eigenvalues
- $\lambda \in F$ is an eigenvalue of T if $\exists v \neq 0$ э $T v=\lambda v$. This v is called an eigenvector, with eigenvalue $\lambda . E_{\lambda}=\{v \in V \mid T v=\lambda v\}$ is called the eigenspace of the eigenvalue λ.
- Characteristic polynomial $f(\lambda)=\operatorname{det}(A-\lambda I)$.
- Roots of f are exactly eigenvalues of A.
- If λ is an eigenvalue of A, then $E_{\lambda}=\operatorname{ker}(A-\lambda I)$, and can explicitly find this by row reduction. (Simple example)
- If A is 2×2, then $f(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$, where $\operatorname{tr}(A)$ is the trace of the matrix A, defined to be the sum of the diagonal entries. (called an eigenbasis).
- Matrix of T with respect to the eigenbasis is a diagonal matrix with the eigenvalues on the diagonal.
- If A is a matrix, $\left\{v_{1}, \ldots, v_{n}\right\}$ an eigenbasis, then $P^{-1} A P=D$ where P is the matrix with $v_{1} \ldots, v_{n}$ as columns, D the diagonal matrix with the eigenvalues on the diagonal.
- Computing A^{m} for diagonalisable matrices. Computing Fibonacci numbers as an application.
- (Unrigorous) For any (real) matrix A and almost any $v \in \mathbb{R}^{n}, A^{n} v$ aligns with the eigenspace corresponding to the eigenvalue of A with largest absolute value.
- Ranking of sports teams in a tournament: Form a matrix A with outcomes of the tournament (e.g. put in the $i, j^{\text {th }}$ entry the score of $i^{\text {th }}$ team vs the $j^{\text {th }}$ team). Such a matrix will necessarily have a positive eigenvalue, and an eigenvector with all positive coordinates. The coordinates of this eigenvector will be the relative ranks of each team.
- A field F is algebraically closed if every non-constant polynomial with coefficients in F has a root in F. (E.g. \mathbb{R} is not algebraically closed, but \mathbb{C} is).
- If α is a root of f, then $f(x)=(x-\alpha)^{k} g(x)$ for some $k \in \mathbb{N}$, and a polynomial g such that $g(\alpha) \neq 0$. The number k is called the multiplicity of the root α.
- If $T \in L(V, V)$, pick a basis B of V, and let A be the matrix of T with respect to the basis B. Define the characteristic polynomial of T by $f(\lambda)=$ $\operatorname{det}(A-\lambda I)$.
- Proof that the definition above is independent of the basis B.
- If λ is an eigenvalue of T, define the algebraic multiplicity of λ to be the multiplicity of λ as a root of the Characteristic polynomial of T. Define the geometry multiplicity to be $\operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}(\operatorname{ker}(T-\lambda I))$.
- For example ($\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ has eigenvalue 1 with both algebraic and geometric multiplicity 1. And $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has eigenvalue 1 with algebraic multiplicity 2 , and geometric multiplicity 1.
- (Proof on homework) The geometric multiplicity is always less than or equal to the algebraic multiplicity.
- (Proof on homework) Let F be algebraically closed. T is diagonalisable if and only if for every eigenvalue of T, the algebraic multiplicity is equal to the geometric multiplicity.
- Let λ be an eigenvalue of T. We say $v \in V, v \neq 0$ is a generalized eigenvector of T with eigenvalue λ if for some $k \geqslant 1,(T-\lambda I)^{k} v=0$. If $k=1$, then v is exactly an eigenvector of T.
- While you can not always guarantee the existence of a basis consisting of eigenvectors, you can guarantee the existence of a basis consisting of generalized eigenvectors. (This is a consequence of the Cayley-Hamilton theorem, and will be proved in homework.)
- (Cayley-Hamilton Theorem) If V is finite dimensional, F is algebraically closed, $T \in L(V, V)$ and f is the characteristic polynomial of T, then $f(T)=$ 0 . [The assumption that F is algebraically closed is redundant.]
* The proof is by induction.
* If F is algebraically closed, T has an eigenvalue (because the characteristic polynomial has at least one root). Let λ_{1} be the eigenvalue, and v_{1} be the associated eigenvector.
* Add vectors v_{2}, \ldots, v_{n} to get a basis of V, and let A be the matrix of T with respect to this basis. Then A has the form

$$
\left(\begin{array}{c|ccc}
\lambda_{1} & * & \cdots & * \\
\hline 0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right)
$$

* Thus $f(\lambda)=\left(\lambda_{1}-\lambda\right) g(\lambda)$, where g is the characteristic polynomial of B. * By block multiplication

$$
f(A)=\left(\lambda_{1} I-\lambda\right) g(A)=\left(\begin{array}{c|ccc}
0 & * & \cdots & * \\
0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right)\left(\begin{array}{c|ccc}
g\left(\lambda_{1}\right) & * & \cdots & * \\
\hline 0 & & & \\
\vdots & & g(B) & \\
0 & &
\end{array}\right)
$$

* Since $g(B)=0$ by the inductive hypothesis, the above product is 0 . QED.
- Spectral theorem
- Let V be a vector space over \mathbb{C}. We say $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ be a complex inner product if
* (Positive definite) $\forall v \in V,\langle v, v\rangle \in \mathbb{R}$ and $\langle v, v\rangle \geqslant 0$. (Non-degenerate) Further $\langle v, v\rangle=0 \Longleftrightarrow v=0$.
* ('Bilinear') $\forall u, v, w \in V,\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$, and $\langle u, v+w\rangle=$ $\langle u, v\rangle+\langle u, w\rangle$. Further, $\forall \lambda \in \mathbb{C}$, and $u, v \in V$, we have $\langle\lambda u, v\rangle=\bar{\lambda}\langle u, v\rangle$, and $\langle u, \lambda v\rangle=\lambda\langle u, v\rangle$. Note the complex conjugate when λ is in the first coordinate.
* ('Symmetric') $\forall u, v \in V,\langle u, v\rangle=\overline{\langle v, u\rangle}$.
- All theorems for real inner products have appropriate analogues for complex inner products. For example, the Cauchy-Schwartz inequality: $|\langle u, v\rangle| \leqslant$ $\|u\|\|v\|$.
* Here's a proof: Case I: Assume $\langle u, v\rangle \in \mathbb{R}$. As before, let $f(\lambda)=\langle u+$ $\lambda v, u+\lambda v\rangle$ for $\lambda \in \mathbb{R}$. This is a quadratic function in λ which is always non-negative, and hence must have a non-positive discriminant. This gives $\langle u, v\rangle \leqslant\|u\|\|v\|$ if $\langle u, v\rangle \in \mathbb{R}$.
* Case II: $\langle u, v\rangle \in \mathbb{C}$ and $\langle u, v\rangle \neq 0$. Pick $\alpha=\frac{\langle u, v\rangle}{|\langle u, v\rangle|}$. Then $\langle\alpha u, v\rangle=$ $\bar{\alpha}\langle u, v\rangle=|u| v \in \mathbb{R}$. Thus by Case I, $|\langle u, v\rangle|=\langle\alpha u, v\rangle \leqslant\|\alpha u\|\|v\|=$ $|\alpha|\|u\|\|v\|=\|u\|\|v\|$, since $|\alpha|=1$.
* Case III: $\langle u, v\rangle=0$ - immediate.
- Let $T \in \mathcal{L}(V, V)$. We say $T^{*} \in \mathcal{L}(V, V)$ is the adjoint of T if $\forall u, v \in V$, $\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle$.
- If the adjoint exists, it is unique. That is if T_{1}, T_{2} are two adjoint's of T, then $T_{1}=T_{2}$.
- If V is finite dimensional, then every $T \in \mathcal{L}(V, V)$ has an adjoint.
* Proof: Case I $-V=\mathbb{C}^{n}$. Then if A is the matrix of T, immediately check that the linear transformation given by the matrix $A^{*}=\bar{A}^{\mathrm{t}}$ is the adjoint of T.
* Case II: Repeat Gram-Schmidt for complex inner-products and prove that V as an orthonormal basis. Now using an orthonormal basis, you can use the formula from the previous case.
- $T \in L(V, V)$ is Hermitian if $T^{*}=T$.
- If T is Hermitian and λ is an eigenvalue of T then $\lambda \in \mathbb{R}$. (Proof: If $T v=\lambda v$, then $\bar{\lambda}\langle v, v\rangle=\langle T v, v\rangle=\langle v, T v\rangle=\lambda\langle v, v\rangle$.)
- If T is Hermitian and λ_{1}, λ_{2} are two distinct eigenvalues are orthogonal. Proof: Let $T v_{1}=\lambda_{1} v_{1}, T v_{2}=\lambda_{2} v_{2}$. Then

$$
\lambda_{1}\left\langle v_{1}, v_{2},=\right\rangle \bar{\lambda}_{1}\left\langle v_{1}, v_{2},=\right\rangle\left\langle T v_{1}, v_{2}\right\rangle=\left\langle v_{1}, T v_{2}\right\rangle=\lambda_{2}\left\langle v_{1}, v_{2}\right\rangle
$$

L38, Fri 12/4. $\quad-$ (Spectral Theorem) If $T T^{*}=T^{*} T$, then T is diagonalisable by an orthonormal basis. (The converse is also true as long as you insist the eigenbasis is orthonormal).

- If $S T=T S$, then S and T have a common eigenvector.
* Proof: Let λ be an eigenvalue of T, and $E_{\lambda}(T)=\operatorname{ker}(T-\lambda I)$. If $v \in$ $E_{\lambda}(T)$, then $(T-\lambda I) S v=S(T-\lambda I) v=0$, and hence $S v \in E_{\lambda}(T)$. This shows $S \in \mathcal{L}\left(E_{\lambda}(T), E_{\lambda}(T)\right)$. Since \mathbb{C} is algebraically closed, S : $E_{\lambda}(T) \rightarrow E_{\lambda}(T)$ must have an eigenvector $v \in E_{\lambda}(T)$. This is the common eigenvector.
- Proof of the spectral theorem (Forward direction).
* By induction on $\operatorname{dim}(V)$. If $\operatorname{dim}(V)=1$ there is nothing to do.
* Assume the theorem for all vector spaces of dimension $n-1$. Use the lemma to pick v_{1} that is a common eigenvector of T and T^{*}.
* Let $W=\left\{w \mid\left\langle w, v_{1}\right\rangle=0\right\}$.
* Note $T \in \mathcal{L}(W, W)$, since $\left\langle T w, v_{1}\right\rangle=\left\langle w, T^{*} v_{1}\right\rangle=\lambda_{1}^{*}\left\langle w, v_{1}\right\rangle=0$.
* Similarly $T^{*} \in \mathcal{L}(W, W)$.
* Let $\left.T\right|_{W}$ denote the linear transformation T restricted to the subspace W. Then $\left(\left.T\right|_{W}\right)^{*}=\left.T^{*}\right|_{W}$, and hence $\left.\left(\left.T\right|_{W}\right)^{*} T\right|_{W}=\left.T\right|_{W}\left(\left.T\right|_{W}\right)^{*}$, and by the inductive hypothesis, there exists v_{2}, \ldots, v_{n} an orthonormal basis of W consisting of eigenvectors of $\left.T\right|_{W}$.
* $\left\{v_{1}, \ldots, v_{n}\right\}$ is the desired basis.

