
Math 341 Syllabus and Lecture schedule.
Gautam Iyer, Fall 2009

L1, Mon. 8/24. • Introduction & motivation
• Fields

– Definition.
– Uniqueness of inverses. Inverse of inverses.

L2, Wed. 8/26. – Multiplication by 0. (−a)(−b) = ab, etc.
– Examples. R, C, Q, Q(

√
2), etc. (Also some non-examples like Z).

L3, Fri. 8/28. • Vector spaces
– Definition.
– Examples: 0, Rn, Fn, function spaces.

L4, Mon. 8/31. – Remark that ‘head-to-toe’ addition is the same as coordinate addition in R2.
– Subspaces. Definition and examples. (Some examples of subspaces in func-

tion spaces).
– Define span{v1, . . . , vn}.

L5, Wed. 9/2. ∗ Check span{v1, . . . , vn} is a subspace.
∗ U ⊆ V a subspace & u1, . . . un ∈ U then span{u1, . . . , un} ⊆ U .
∗ span{v1, . . . , vn} is the smallest subspace containing v1, . . . , vn.
∗ Span of infinite sets.

L6, Fri. 9/4. – Linear dependence / independence.
∗ Example in R3.
∗ {u, v} L.D. ⇐⇒ u = λv or v = λu.

– Basis.
∗ Definition, Examples. Canonical basis in Fn.

L7, Wed. 9/9. ∗ Any n + 1 vectors in span{v1, . . . , vn} are L.D.
∗ Any two (finite) basis of V have the same cardinality, and define dimen-

sion.
L8, Fri. 9/9. ∗ Basis of the zero vector space.

∗ S is L.I. ⇐⇒ ∀s ∈ S, s 6∈ span(S − {s}).
∗ If u ∈ span(S), then span(S ∩ {u}) = span(S).

L9, Mon. 9/14. ∗ Any spanning set contains a basis.
∗ Any L.I. set can be extended to a basis.
∗ Dimension counting (e.g. dim(U +V ) = dim(U)+dim(V )−dim(U ∩V ).)
∗ maximal L.I. ⇐⇒ minimal spanning ⇐⇒ basis (On homework)

L10, Wed. 9/16. ∗ Row reduction, and explicitly finding basis from spanning sets.
L11, Fri. 9/18. – Linear equations.

∗ Reduced echelon form.
L12, Mon 9/21. ∗ Row rank, dimension of the solution space.

∗ The inhomogeneous case (on homework).
L13, Fri 9/25. • Linear Transformations.

– Definitions, examples.
– L(U, V ) is a vector space.

L14, Mon 9/28. – Closure of L(U,U) under composition
– Associativity, non-commutativity, etc.
– Identity, inverse.

L15, Wed 9/30. – T : U → V linear and bijective =⇒ T−1 is linear.
– Isomorphisms
– T ∈ L(U, V ) injective ⇐⇒ ker(T ) = {0}.

L16, Fri 10/2. – Im(T ) is a subspace
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– Rank Nullity theorem.
L17, Mon 10/5. – Coordinates with respect to arbitrary basis.

– Matrix representation of linear transformation.
– (ST )B = (S)B(T )B

L18, Wed 10/7. – Basis change matrix, and relation of columns to the resp. basis vectors.
– Basis change for linear transformations. (T )C = S−1

C→B(T )BSC→B

L19, Fri 10/9. – Inverses of matrices by row reduction.
L20, Mon 10/12. – Elementary matrices, and row operations through products.

• Inner products
– Definition, examples.
– Cosine rule ⇐⇒ 〈x, y〉 = ‖x‖‖y‖ cos α in R2.

L21, Wed 10/14. – Inner product on Rn.
– Lengths. Cauchy-Schwartz, triangle inequality.

L22, Mon 10/19. – Orthonormal basis. Linear independence and coordinates.
L23, Wed 10/21. – Gram-Schmidt.

– Orthogonal transformations.
L24, Fri 10/23. – T ∈ L(V, V ) orthogonal ⇐⇒ ‖x‖ = ‖Tx‖ for all x ∈ V .

– An n×n matrix is orthogonal ⇐⇒ the columns form an Orthonormal basis
⇐⇒ rows form an orthonormal basis ⇐⇒ AtA = I.

L25, Mon 10/26. – T ∈ L(V, V ) orthogonal ⇐⇒ there exists an orthonormal basis {u1, . . . , un}
such that {Tu1, . . . , Tun} is an orthonormal basis ⇐⇒ there exists an
orthonormal basis B = {u1, . . . , un} such that (T )tB(T )B = I.

– Rotation matrices in R2.
L26, Fri 10/30. – Reflection matrices in R2, and classification of all orthogonal 2× 2 matrices.

• Determinants
– Definition of the determinant function D : (Fn)n → F .

L27, Mon 11/2. – Swaps: D(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn) = −D(v1, . . . , vn)
for i 6= j.

– D(v1, . . . , vi−1, vi +
∑

j 6=i αjvj , vi+1, . . . vn) = D(v1, . . . , vn).
– v1, . . . , vn linearly dependent implies D(v1, . . . , vn) = 0.
– Multi-linearity: D(v1, . . . , vi−1, v

′
i + v′′

i , vi+1, . . . , vn) =
D(v1, . . . , vi−1, v

′
i, vi+1, . . . , vn) + D(v1, . . . , vi−1, v

′′
i , vi+1, . . . , vn)

L28, Wed 11/4. – Computing by column operations. If v1, . . . , vn are L.I., then reduce v1, . . . , vn

to e1, . . . , en using elementary column operations. Then D(v1, . . . , vn) =
(−1)# swaps/product of all factors you scale by.

– Uniqueness: D,D′ two functions satisfying the axioms then D = D′.
L29, Fri 11/6. – Existence: Define v′ to be the vector v with first coordinate deleted. Let

vj =
∑

i aijei, and define (inductively)

D(v1, . . . , vn) =
n

∑

j=1

(−1)1+ja1,jD(v′
1, . . . , v

′
j−1, v

′
j+1, . . . , v

′
n)

Prove D satisfies axioms as follows:
∗ Show D(e1, . . . , en) = 1.
∗ Show D(αv1, v2, . . . , vn) = αD(v1, . . . , vn).
∗ Show D(v1 + v2, v2, . . . , vn) = αD(v1, . . . , vn).
∗ Show swaps: D(v1, . . . , vj , . . . , vi, . . . , vn) = −D(v1, . . . , vn) for i 6= j.

L30, Mon 11/9. – A = (ai,j). Ci,j = A with ith row and jth column deleted. Show |A| =
∑

j(−1)i+jai,j |Ci,j | for any i.
– Show properties of |A| with respect to row operations.

L31, Wed 11/11. – Show |A| =
∑

i(−1)i+jai,j |Ci,j | for any j.
– |A| = 0 ⇐⇒ A is not invertible.
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– Show |AB| = |A||B|.
L32, Fri 11/13. • Eigenvalues

– λ ∈ F is an eigenvalue of T if ∃v 6= 0 Ä Tv = λv. This v is called an
eigenvector, with eigenvalue λ. Eλ = {v ∈ V | Tv = λv} is called the
eigenspace of the eigenvalue λ.

– Characteristic polynomial f(λ) = det(A − λI).
– Roots of f are exactly eigenvalues of A.
– If λ is an eigenvalue of A, then Eλ = ker(A−λI), and can explicitly find this

by row reduction. (Simple example)
– If A is 2 × 2, then f(λ) = λ2 − tr(A)λ + det(A), where tr(A) is the trace of

the matrix A, defined to be the sum of the diagonal entries.
L33, Mon 11/16. – T is diagonalisable if there exists a basis of V consisting of eigenvectors of T

(called an eigenbasis).
– Matrix of T with respect to the eigenbasis is a diagonal matrix with the

eigenvalues on the diagonal.
– If A is a matrix, {v1, . . . , vn} an eigenbasis, then P−1AP = D where P is the

matrix with v1 . . . , vn as columns, D the diagonal matrix with the eigenvalues
on the diagonal.

– Computing Am for diagonalisable matrices. Computing Fibonacci numbers
as an application.

L34, Wed 11/18. – (Unrigorous) For any (real) matrix A and almost any v ∈ Rn, Anv aligns
with the eigenspace corresponding to the eigenvalue of A with largest absolute
value.

– Ranking of sports teams in a tournament: Form a matrix A with outcomes
of the tournament (e.g. put in the i, jth entry the score of ith team vs the
jth team). Such a matrix will necessarily have a positive eigenvalue, and an
eigenvector with all positive coordinates. The coordinates of this eigenvector
will be the relative ranks of each team.

L35, Fri 11/20. – A field F is algebraically closed if every non-constant polynomial with co-
efficients in F has a root in F . (E.g. R is not algebraically closed, but C

is).
– If α is a root of f , then f(x) = (x−α)kg(x) for some k ∈ N, and a polynomial

g such that g(α) 6= 0. The number k is called the multiplicity of the root α.
– If T ∈ L(V, V ), pick a basis B of V , and let A be the matrix of T with

respect to the basis B. Define the characteristic polynomial of T by f(λ) =
det(A − λI).

– Proof that the definition above is independent of the basis B.
– If λ is an eigenvalue of T , define the algebraic multiplicity of λ to be the

multiplicity of λ as a root of the Characteristic polynomial of T . Define the
geometry multiplicity to be dim(Eλ) = dim(ker(T − λI)).

– For example ( 1 0
0 1 ) has eigenvalue 1 with both algebraic and geometric mul-

tiplicity 1. And ( 1 1
0 1 ) has eigenvalue 1 with algebraic multiplicity 2, and

geometric multiplicity 1.
L36, Mon 11/23. – (Proof on homework) The geometric multiplicity is always less than or equal

to the algebraic multiplicity.
– (Proof on homework) Let F be algebraically closed. T is diagonalisable if

and only if for every eigenvalue of T , the algebraic multiplicity is equal to the
geometric multiplicity.

– Let λ be an eigenvalue of T . We say v ∈ V , v 6= 0 is a generalized eigenvector
of T with eigenvalue λ if for some k > 1, (T − λI)kv = 0. If k = 1, then v is

exactly an eigenvector of T .
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– While you can not always guarantee the existence of a basis consisting of
eigenvectors, you can guarantee the existence of a basis consisting of gener-
alized eigenvectors. (This is a consequence of the Cayley-Hamilton theorem,
and will be proved in homework.)

– (Cayley-Hamilton Theorem) If V is finite dimensional, F is algebraically
closed, T ∈ L(V, V ) and f is the characteristic polynomial of T , then f(T ) =
0. [The assumption that F is algebraically closed is redundant.]

∗ The proof is by induction.
∗ If F is algebraically closed, T has an eigenvalue (because the characteristic

polynomial has at least one root). Let λ1 be the eigenvalue, and v1 be the
associated eigenvector.

∗ Add vectors v2, . . . , vn to get a basis of V , and let A be the matrix of T
with respect to this basis. Then A has the form











λ1 ∗ · · · ∗
0
... B
0











∗ Thus f(λ) = (λ1 − λ)g(λ), where g is the characteristic polynomial of B.
∗ By block multiplication

f(A) = (λ1I − λ)g(A) =











0 ∗ · · · ∗
0
... B
0





















g(λ1) ∗ · · · ∗
0
... g(B)
0











∗ Since g(B) = 0 by the inductive hypothesis, the above product is 0. QED.
L37, Mon 11/30. • Spectral theorem

– Let V be a vector space over C. We say 〈·, ·〉 : V × V → C be a complex
inner product if
∗ (Positive definite) ∀v ∈ V , 〈v, v〉 ∈ R and 〈v, v〉 > 0. (Non-degenerate)

Further 〈v, v〉 = 0 ⇐⇒ v = 0.
∗ (‘Bilinear’) ∀u, v, w ∈ V , 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉, and 〈u, v + w〉 =

〈u, v〉 + 〈u,w〉. Further, ∀λ ∈ C, and u, v ∈ V , we have 〈λu, v〉 = λ̄〈u, v〉,
and 〈u, λv〉 = λ〈u, v〉. Note the complex conjugate when λ is in the first
coordinate.

∗ (‘Symmetric’) ∀u, v ∈ V , 〈u, v〉 = 〈v, u〉.
– All theorems for real inner products have appropriate analogues for complex

inner products. For example, the Cauchy-Schwartz inequality: |〈u, v〉| 6

‖u‖‖v‖.
∗ Here’s a proof: Case I: Assume 〈u, v〉 ∈ R. As before, let f(λ) = 〈u +

λv, u + λv〉 for λ ∈ R. This is a quadratic function in λ which is always
non-negative, and hence must have a non-positive discriminant. This gives
〈u, v〉 6 ‖u‖‖v‖ if 〈u, v〉 ∈ R.

∗ Case II: 〈u, v〉 ∈ C and 〈u, v〉 6= 0. Pick α = 〈u,v〉
|〈u,v〉| . Then 〈αu, v〉 =

ᾱ〈u, v〉 = |u|v ∈ R. Thus by Case I, |〈u, v〉| = 〈αu, v〉 6 ‖αu‖‖v‖ =
|α|‖u‖‖v‖ = ‖u‖‖v‖, since |α| = 1.

∗ Case III: 〈u, v〉 = 0 – immediate.
– Let T ∈ L(V, V ). We say T ∗ ∈ L(V, V ) is the adjoint of T if ∀u, v ∈ V ,

〈Tu, v〉 = 〈u, T ∗v〉.
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– If the adjoint exists, it is unique. That is if T1, T2 are two adjoint’s of T , then
T1 = T2.

– If V is finite dimensional, then every T ∈ L(V, V ) has an adjoint.
∗ Proof: Case I – V = Cn. Then if A is the matrix of T , immediately check

that the linear transformation given by the matrix A∗ = Āt is the adjoint
of T .

∗ Case II: Repeat Gram-Schmidt for complex inner-products and prove that
V as an orthonormal basis. Now using an orthonormal basis, you can use
the formula from the previous case.

– T ∈ L(V, V ) is Hermitian if T ∗ = T .
– If T is Hermitian and λ is an eigenvalue of T then λ ∈ R. (Proof: If Tv = λv,

then λ̄〈v, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = λ〈v, v〉.)
– If T is Hermitian and λ1, λ2 are two distinct eigenvalues are orthogonal.

Proof: Let Tv1 = λ1v1, Tv2 = λ2v2. Then

λ1 〈v1, v2,=〉 λ̄1 〈v1, v2,=〉 〈Tv1, v2〉 = 〈v1, T v2〉 = λ2 〈v1, v2〉

L38, Fri 12/4. – (Spectral Theorem) If TT ∗ = T ∗T , then T is diagonalisable by an orthonor-
mal basis. (The converse is also true as long as you insist the eigenbasis is
orthonormal).

– If ST = TS, then S and T have a common eigenvector.
∗ Proof: Let λ be an eigenvalue of T , and Eλ(T ) = ker(T − λI). If v ∈

Eλ(T ), then (T − λI)Sv = S(T − λI)v = 0, and hence Sv ∈ Eλ(T ).
This shows S ∈ L(Eλ(T ), Eλ(T )). Since C is algebraically closed, S :
Eλ(T ) → Eλ(T ) must have an eigenvector v ∈ Eλ(T ). This is the common
eigenvector.

– Proof of the spectral theorem (Forward direction).
∗ By induction on dim(V ). If dim(V ) = 1 there is nothing to do.
∗ Assume the theorem for all vector spaces of dimension n − 1. Use the

lemma to pick v1 that is a common eigenvector of T and T ∗.
∗ Let W = {w | 〈w, v1〉 = 0}.
∗ Note T ∈ L(W,W ), since 〈Tw, v1〉 = 〈w, T ∗v1〉 = λ∗

1〈w, v1〉 = 0.
∗ Similarly T ∗ ∈ L(W,W ).
∗ Let T |W denote the linear transformation T restricted to the subspace W .

Then (T |W )∗ = T ∗|W , and hence (T |W )∗T |W = T |W (T |W )∗, and by the
inductive hypothesis, there exists v2, . . . , vn an orthonormal basis of W
consisting of eigenvectors of T |W .

∗ {v1, . . . , vn} is the desired basis.
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