Math 341 Syllabus and Lecture schedule.

Gautam Iyer, Fall 2009

L1, Mon. 8/24.	• Introduction & motivation
	• Fields
	– Definition.
	– Uniqueness of inverses. Inverse of inverses.
L2, Wed. 8/26.	- Multiplication by 0. $(-a)(-b) = ab$, etc.
, ,	– Examples. $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Q}(\sqrt{2})$, etc. (Also some non-examples like \mathbb{Z}).
L3, Fri. 8/28.	• Vector spaces
	– Definition.
	- Examples: $0, \mathbb{R}^n, F^n$, function spaces.
L4, Mon. 8/31.	- Remark that 'head-to-toe' addition is the same as coordinate addition in \mathbb{R}^2 .
,	– Subspaces. Definition and examples. (Some examples of subspaces in func-
	tion spaces).
	- Define span $\{v_1, \ldots, v_n\}$.
L5, Wed. 9/2.	* Check span{ v_1, \ldots, v_n } is a subspace.
/ /	* $U \subseteq V$ a subspace & $u_1, \ldots, u_n \in U$ then span $\{u_1, \ldots, u_n\} \subseteq U$.
	* $\operatorname{span}\{v_1,\ldots,v_n\}$ is the smallest subspace containing v_1,\ldots,v_n .
	* Span of infinite sets.
L6. Fri. 9/4.	 Linear dependence / independence.
	* Example in \mathbb{R}^3 .
	* $\{u, v\}$ L.D. $\iff u = \lambda v \text{ or } v = \lambda u$.
	- Basis.
	* Definition, Examples, Canonical basis in F^n .
L7. Wed. 9/9.	* Any $n+1$ vectors in span $\{v_1, \ldots, v_n\}$ are L.D.
,,	* Any two (finite) basis of V have the same cardinality, and define dimen-
	sion.
L8. Fri. 9/9.	* Basis of the zero vector space.
10, 170. 0/0.	* S is L I $\iff \forall s \in S \ s \notin \operatorname{span}(S - \{s\})$
	* If $u \in \operatorname{span}(S)$ then $\operatorname{span}(S \cap \{u\}) = \operatorname{span}(S)$
L9. Mon. 9/14.	* Any spanning set contains a basis.
20, 11010 0/ 14.	* Any L L set can be extended to a basis
	* Dimension counting (e.g. $\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$)
	* maximal L \downarrow \downarrow minimal spanning \Leftrightarrow hasis (On homework)
L10 Wed 9/16	* Bow reduction and explicitly finding basis from spanning sets
L11 Fri 9/18	- Linear equations
111, 170. 0/10.	* Reduced echelon form
L12 Mon 9/21	* Bow rank dimension of the solution space
112, 11010 5/21.	* The inhomogeneous case (on homework)
L13 Fri 9/25	• Linear Transformations
110, 110 0/ 20.	- Definitions examples
	$- \mathcal{L}(U V)$ is a vector space
L11 Mon 9/98	- Closure of $\mathcal{L}(U U)$ under composition
114, mon 5/20.	$- \Delta$ speciativity, non-commutativity, etc.
	- Identity inverse
L15 Wed 0/20	$-T: U \rightarrow V$ linear and bijective $\longrightarrow T^{-1}$ is linear
110, wea 3/00.	- Isomorphisms
	$- T \in \mathcal{C}(U V) \text{ injective } \iff \ker(T) - \int 0$
116 Eri 10/0	$- \operatorname{Im}(T) \text{ is a subspace} \qquad \qquad \operatorname{MCI}(T) - \{0\}.$
110, 111 10/2.	III(I) is a subspace

L17, Mor	n 10/5.	 Rank Nullity theorem. Coordinates with respect to arbitrary basis.
		- Matrix representation of linear transformation. - $(ST)_{P} = (S)_{P}(T)_{P}$
L18, Wee	d 10/7.	- Basis change matrix, and relation of columns to the resp. basis vectors. - Basis change for linear transformations. $(T)_C = S_C^{-1} {}_R(T)_B S_{C \rightarrow B}$
L19. Fri	10/9.	- Inverses of matrices by row reduction.
L20. Mor	n 10/12.	- Elementary matrices, and row operations through products.
/	· •	Inner products
		– Definition, examples,
		- Cosine rule $\iff \langle x, y \rangle = x y \cos \alpha$ in \mathbb{R}^2 .
L21 Wee	d 10/1/	- Inner product on \mathbb{R}^n
121, 110	. 10/14.	- Lengths Cauchy-Schwartz triangle inequality
L99 Mo	$n \ 10/10$	 Orthonormal basis Linear independence and coordinates
1.22, MOI	d 10/15.	- Gram-Schmidt
L_{20} , we	u 10/21.	Orthogonal transformations
IOI Eri	10/09	$= 0 \text{ thogonal transformations.}$ $T \in L(V, V) \text{ orthogonal } \longleftrightarrow r = Trr \text{ for all } r \in V$
124, 177	10/23.	$-1 \in L(V, V)$ of the gold $\longrightarrow \ x\ - \ x\ $ for all $x \in V$.
		- All $n \times n$ matrix is orthogonal \iff the columns form an Orthonormal basis
TOF M.	- 10/06	\Leftrightarrow rows form an orthonormal basis $\Leftrightarrow A^*A = I$.
L25, M01	n 10/26.	$-I \in L(V, V)$ orthogonal \iff there exists an orthonormal basis $\{u_1, \ldots, u_n\}$
		such that $\{Iu_1, \ldots, Iu_n\}$ is an orthonormal basis \iff there exists an
		orthonormal basis $B = \{u_1, \dots, u_n\}$ such that $(T)^*_B(T)_B = I$.
	10/00	- Rotation matrices in \mathbb{R}^2 .
L26, Fri	10/30.	- Reflection matrices in \mathbb{R}^2 , and classification of all orthogonal 2×2 matrices.
	•	Determinants
TON 11	11/0	- Definition of the determinant function $D: (F^n)^n \to F$.
L27, Moi	n 11/2.	- Swaps: $D(v_1, \ldots, v_{i-1}, v_j, v_{i+1}, \ldots, v_{j-1}, v_i, v_{j+1}, \ldots, v_n) = -D(v_1, \ldots, v_n)$
		for $i \neq j$.
		$- D(v_1, \dots, v_{i-1}, v_i + \sum_{j \neq i} \alpha_j v_j, v_{i+1}, \dots, v_n) = D(v_1, \dots, v_n).$
		$-v_1, \ldots, v_n$ linearly dependent implies $D(v_1, \ldots, v_n) = 0.$
		- Multi-linearity: $D(v_1,, v_{i-1}, v'_i + v''_i, v_{i+1},, v_n) =$
		$D(v_1, \dots, v_{i-1}, v'_i, v_{i+1}, \dots, v_n) + D(v_1, \dots, v_{i-1}, v''_i, v_{i+1}, \dots, v_n)$
L28, Wea	d 11/4.	- Computing by column operations. If v_1, \ldots, v_n are L.I., then reduce v_1, \ldots, v_n
		to e_1, \ldots, e_n using elementary column operations. Then $D(v_1, \ldots, v_n) =$
		$(-1)^{\# \text{ swaps}}/\text{product of all factors you scale by.}$
		- Uniqueness: D, D' two functions satisfying the axioms then $D = D'$.
L29, Fri	11/6.	– Existence: Define v' to be the vector v with first coordinate deleted. Let
		$v_j = \sum_i a_{ij} e_i$, and define (inductively)
		n
		$D(v_1, \dots, v_n) = \sum_{j=1}^{n} (-1)^{1+j} a_{1,j} D(v'_1, \dots, v'_{j-1}, v'_{j+1}, \dots, v'_n)$
		Prove D satisfies axioms as follows:
		* Snow $D(e_1,, e_n) = 1$.
		* Show $D(\alpha v_1, v_2, \dots, v_n) = \alpha D(v_1, \dots, v_n).$
		* Show $D(v_1 + v_2, v_2, \dots, v_n) = \alpha D(v_1, \dots, v_n).$
100 35	11/0	* Snow swaps: $D(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_n) = -D(v_1, \ldots, v_n)$ for $i \neq j$.
L30, Moi	n 11/9.	$-A = (a_{i,j})$. $C_{i,j} = A$ with $i^{\circ n}$ row and $j^{\circ n}$ column deleted. Show $ A = \sum_{i=1}^{n} (a_{i,j})^{i+1} + (a_{i,j})^{i+1} + (a_{i,j})^{i+1}$
		$\sum_{i=1}^{j} (-1)^{i+j} a_{i,j} C_{i,j} \text{ for any } i.$
T 0 4	• • • • • •	- Show properties of $ A $ with respect to row operations.
L31, Wee	d 11/11.	- Show $ A = \sum_{i} (-1)^{i+j} a_{i,j} C_{i,j} $ for any <i>j</i> .
		$ A = 0 \iff A$ is not invertible.

	- Show $ AB = A B $.
L32, Fri 11/13.	 Eigenvalues λ ∈ F is an eigenvalue of T if ∃v ≠ 0 → Tv = λv. This v is called an eigenvector, with eigenvalue λ. E_λ = {v ∈ V Tv = λv} is called the eigenspace of the eigenvalue λ. Characteristic polynomial f(λ) = det(A - λI).
	 Roots of f are exactly eigenvalues of A. If λ is an eigenvalue of A, then E_λ = ker(A − λI), and can explicitly find this by row reduction. (Simple example) If A is 2 × 2, then f(λ) = λ² − tr(A)λ + det(A), where tr(A) is the <i>trace</i> of
L33, Mon 11/16.	 the matrix A, defined to be the sum of the diagonal entries. T is diagonalisable if there exists a basis of V consisting of eigenvectors of T (called an eigenbasis).
	 Matrix of T with respect to the eigenbasis is a diagonal matrix with the eigenvalues on the diagonal. If A is a matrix, {v₁,, v_n} an eigenbasis, then P⁻¹AP = D where P is the
	matrix with $v_1 \ldots v_n$ as columns, D the diagonal matrix with the eigenvalues on the diagonal.
	- Computing A^m for diagonalisable matrices. Computing Fibonacci numbers as an application.
L34, Wed 11/18.	- (Unrigorous) For any (real) matrix A and almost any $v \in \mathbb{R}^n$, $A^n v$ aligns with the eigenspace corresponding to the eigenvalue of A with largest absolute value.
	- Ranking of sports teams in a tournament: Form a matrix A with outcomes of the tournament (e.g. put in the i, j^{th} entry the score of i^{th} team vs the j^{th} team). Such a matrix will necessarily have a positive eigenvalue, and an eigenvector with all positive coordinates. The coordinates of this eigenvector will be the relative ranks of each team.
L35, Fri 11/20.	- A field F is algebraically closed if every non-constant polynomial with co- efficients in F has a root in F . (E.g. \mathbb{R} is not algebraically closed, but \mathbb{C} is).
	 If α is a root of f, then f(x) = (x - α)^kg(x) for some k ∈ N, and a polynomial g such that g(α) ≠ 0. The number k is called the multiplicity of the root α. If T ∈ L(V,V), pick a basis B of V, and let A be the matrix of T with respect to the basis B. Define the characteristic polynomial of T by f(λ) = det(A - λI)
	 Proof that the definition above is independent of the basis B. If λ is an eigenvalue of T, define the algebraic multiplicity of λ to be the multiplicity of λ as a root of the Characteristic polynomial of T. Define the geometry multiplicity to be dim(E_λ) = dim(ker(T - λI)).
	- For example $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has eigenvalue 1 with both algebraic and geometric multiplicity 1. And $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has eigenvalue 1 with algebraic multiplicity 2, and geometric multiplicity 1
L36, Mon 11/23.	 <i>Proof on homework)</i> The geometric multiplicity is always less than or equal to the algebraic multiplicity.
	- (Proof on homework) Let F be algebraically closed. T is diagonalisable if and only if for every eigenvalue of T , the algebraic multiplicity is equal to the geometric multiplicity.
	- Let λ be an eigenvalue of T . We say $v \in V$, $v \neq 0$ is a generalized eigenvector of T with eigenvalue λ if for some $k \ge 1$, $(T - \lambda I)^k v = 0$. If $k = 1$, then v is exactly an eigenvector of T .

3

- While you can not always guarantee the existence of a basis consisting of eigenvectors, you can guarantee the existence of a basis consisting of generalized eigenvectors. (This is a consequence of the Cayley-Hamilton theorem, and will be proved in homework.)
- (Cayley-Hamilton Theorem) If V is finite dimensional, F is algebraically closed, $T \in L(V, V)$ and f is the characteristic polynomial of T, then f(T) =0. [The assumption that F is algebraically closed is redundant.]
 - * The proof is by induction.
 - * If F is algebraically closed, T has an eigenvalue (because the characteristic polynomial has at least one root). Let λ_1 be the eigenvalue, and v_1 be the associated eigenvector.
 - Add vectors v_2, \ldots, v_n to get a basis of V, and let A be the matrix of T with respect to this basis. Then A has the form

$$\begin{pmatrix} \lambda_1 & \ast & \cdots & \ast \\ 0 & & & \\ \vdots & B & \\ 0 & & & \end{pmatrix}$$

- * Thus $f(\lambda) = (\lambda_1 \lambda)g(\lambda)$, where g is the characteristic polynomial of B.
- * By block multiplication

$$f(A) = (\lambda_1 I - \lambda)g(A) = \begin{pmatrix} 0 & * & \cdots & * \\ 0 & & & \\ \vdots & B & \\ 0 & & & \end{pmatrix} \begin{pmatrix} g(\lambda_1) & * & \cdots & * \\ 0 & & & \\ \vdots & & g(B) & \\ 0 & & & \end{pmatrix}$$

* Since q(B) = 0 by the inductive hypothesis, the above product is 0. QED. L37, Mon 11/30. • Spectral theorem

- Let V be a vector space over \mathbb{C} . We say $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ be a complex inner product if
 - * (Positive definite) $\forall v \in V, \langle v, v \rangle \in \mathbb{R}$ and $\langle v, v \rangle \ge 0$. (Non-degenerate) Further $\langle v, v \rangle = 0 \iff v = 0$.
 - * ('Bilinear') $\forall u, v, w \in V, \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle, \text{ and } \langle u, v + w \rangle =$ $\langle u, v \rangle + \langle u, w \rangle$. Further, $\forall \lambda \in \mathbb{C}$, and $u, v \in V$, we have $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$, and $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$. Note the complex conjugate when λ is in the first coordinate.
 - * ('Symmetric') $\forall u, v \in V, \langle u, v \rangle = \overline{\langle v, u \rangle}.$
- All theorems for real inner products have appropriate analogues for complex inner products. For example, the Cauchy-Schwartz inequality: $|\langle u, v \rangle| \leq$ ||u|||v||.
 - * Here's a proof: Case I: Assume $\langle u, v \rangle \in \mathbb{R}$. As before, let $f(\lambda) = \langle u + v \rangle$ $\lambda v, u + \lambda v$ for $\lambda \in \mathbb{R}$. This is a quadratic function in λ which is always non-negative, and hence must have a non-positive discriminant. This gives $\langle u, v \rangle \leq ||u|| ||v||$ if $\langle u, v \rangle \in \mathbb{R}$.
 - * Case II: $\langle u, v \rangle \in \mathbb{C}$ and $\langle u, v \rangle \neq 0$. Pick $\alpha = \frac{\langle u, v \rangle}{|\langle u, v \rangle|}$. Then $\langle \alpha u, v \rangle =$ $\bar{\alpha}\langle u,v\rangle = |u|v \in \mathbb{R}$. Thus by Case I, $|\langle u,v\rangle| = \langle \alpha u,v\rangle \leqslant ||\alpha u|| ||v|| =$ $|\alpha|||u|||v|| = ||u|||v||$, since $|\alpha| = 1$. * Case III: $\langle u, v \rangle = 0$ – immediate.
- Let $T \in \mathcal{L}(V, V)$. We say $T^* \in \mathcal{L}(V, V)$ is the adjoint of T if $\forall u, v \in V$, $\langle Tu, v \rangle = \langle u, T^*v \rangle.$

- If the adjoint exists, it is unique. That is if T_1, T_2 are two adjoint's of T, then $T_1 = T_2$.
- If V is finite dimensional, then every $T \in \mathcal{L}(V, V)$ has an adjoint.
 - * Proof: Case I $V = \mathbb{C}^n$. Then if A is the matrix of T, immediately check that the linear transformation given by the matrix $A^* = \overline{A}^t$ is the adjoint of T.
 - * Case II: Repeat Gram-Schmidt for complex inner-products and prove that V as an orthonormal basis. Now using an orthonormal basis, you can use the formula from the previous case.
- $T \in L(V, V)$ is Hermitian if $T^* = T$.
- If T is Hermitian and λ is an eigenvalue of T then $\lambda \in \mathbb{R}$. (Proof: If $Tv = \lambda v$, then $\overline{\lambda} \langle v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \lambda \langle v, v \rangle$.)
- If T is Hermitian and λ_1, λ_2 are two distinct eigenvalues are orthogonal. Proof: Let $Tv_1 = \lambda_1 v_1, Tv_2 = \lambda_2 v_2$. Then

$$\lambda_1 \langle v_1, v_2, = \rangle \,\overline{\lambda}_1 \, \langle v_1, v_2, = \rangle \, \langle Tv_1, v_2 \rangle = \langle v_1, Tv_2 \rangle = \lambda_2 \, \langle v_1, v_2 \rangle$$

- L38, Fri 12/4. (Spectral Theorem) If $TT^* = T^*T$, then T is diagonalisable by an orthonormal basis. (The converse is also true as long as you insist the eigenbasis is orthonormal).
 - If ST = TS, then S and T have a common eigenvector.
 - * Proof: Let λ be an eigenvalue of T, and $E_{\lambda}(T) = \ker(T \lambda I)$. If $v \in E_{\lambda}(T)$, then $(T \lambda I)Sv = S(T \lambda I)v = 0$, and hence $Sv \in E_{\lambda}(T)$. This shows $S \in \mathcal{L}(E_{\lambda}(T), E_{\lambda}(T))$. Since \mathbb{C} is algebraically closed, $S : E_{\lambda}(T) \to E_{\lambda}(T)$ must have an eigenvector $v \in E_{\lambda}(T)$. This is the common eigenvector.
 - Proof of the spectral theorem (Forward direction).
 - * By induction on $\dim(V)$. If $\dim(V) = 1$ there is nothing to do.
 - * Assume the theorem for all vector spaces of dimension n-1. Use the lemma to pick v_1 that is a common eigenvector of T and T^* .
 - * Let $W = \{ w \mid \langle w, v_1 \rangle = 0 \}.$
 - * Note $T \in \mathcal{L}(W, W)$, since $\langle Tw, v_1 \rangle = \langle w, T^*v_1 \rangle = \lambda_1^* \langle w, v_1 \rangle = 0$.
 - * Similarly $T^* \in \mathcal{L}(W, W)$.
 - * Let $T|_W$ denote the linear transformation T restricted to the subspace W. Then $(T|_W)^* = T^*|_W$, and hence $(T|_W)^*T|_W = T|_W(T|_W)^*$, and by the inductive hypothesis, there exists v_2, \ldots, v_n an orthonormal basis of W consisting of eigenvectors of $T|_W$.
 - * $\{v_1, \ldots, v_n\}$ is the desired basis.