Math 341 Syllabus and Lecture schedule.
Gautam Iyer, Fall 2009

L1, Mon. 8/24. e Introduction & motivation

e Fields
— Definition.
— Uniqueness of inverses. Inverse of inverses.
L2, Wed. 8/26. — Multiplication by 0. (—a)(—b) = ab, etc.

— Examples. R,C,Q, Q(v/2), etc. (Also some non-examples like Z).
L3, Fri. 8/28. e Vector spaces
— Definition.
— Examples: 0,R", F", function spaces.
L4, Mon. 8/31. — Remark that ‘head-to-toe’ addition is the same as coordinate addition in R2.
— Subspaces. Definition and examples. (Some examples of subspaces in func-
tion spaces).
— Define span{vy,...,v,}.

L5, Wed. 9/2. * Check span{vy,...,v,} is a subspace.
x U CV asubspace & uy,...u, € U then span{uy,...,u,} CU.
* span{vi,...,v,} is the smallest subspace containing vy, ..., vy.
* Span of infinite sets.

L6, Fri. 9/4. — Linear dependence / independence.

* Example in R3.
* {u,v} LD. <= wu=\vorv=A\u.

— DBasis.
x Definition, Examples. Canonical basis in F™.
L7, Wed. 9/9. * Any n + 1 vectors in span{vy,...,v,} are L.D.
% Any two (finite) basis of V have the same cardinality, and define dimen-
sion.
L8, Fri. 9/9. * DBasis of the zero vector space.
* SisLI <= Vse€ S, s¢span(S — {s}).
* If u € span(S), then span(S N {u}) = span(S).
L9, Mon. 9/14. x Any spanning set contains a basis.
x Any L.I. set can be extended to a basis.
* Dimension counting (e.g. dim(U + V) = dim(U) 4+ dim(V) —dim(UNV).)
* maximal L.I. <= minimal spanning <= basis (On homework)
L10, Wed. 9/16. * Row reduction, and explicitly finding basis from spanning sets.
L11, Fri. 9/18. — Linear equations.
* Reduced echelon form.
L12, Mon 9/21. x Row rank, dimension of the solution space.

* The inhomogeneous case (on homework).
L13, Fri 9/25. e Linear Transformations.
— Definitions, examples.
— L(U,V) is a vector space.
L1}, Mon 9/28. — Closure of £L(U,U) under composition
— Associativity, non-commutativity, etc.
— Identity, inverse.

L15, Wed 9/50. — T :U — V linear and bijective == T~! is linear.
— Isomorphisms
— T e L(U,V) injective <= ker(T) = {0}.

L16, Fri 10/2. — Im(T) is a subspace



L17, Mon 10/5.

L18, Wed 10/7.

L19, Fri 10/9.

L20, Mon 10/12.

L21, Wed 10/1/.

L22, Mon 10/19.

L23, Wed 10/21.

L24, Fri 10/23.

L25, Mon, 10/26.

L26, Fri 10/30.

L27, Mon 11/2.

L28, Wed 11/J.

L29, Fri 11/6.

L30, Mon 11/9.

L31, Wed 11/11.

Rank Nullity theorem.

Coordinates with respect to arbitrary basis.

Matrix representation of linear transformation.

(ST)p = (5)8(T)s

Basis change matrix, and relation of columns to the resp. basis vectors.
Basis change for linear transformations. (T)¢ = Sg'. 5(T)5Sc—5
Inverses of matrices by row reduction.

Elementary matrices, and row operations through products.

e Inner products

Definition, examples.

Cosine rule <= (z,y) = ||z||||y|| cos @ in R

Inner product on R™.

Lengths. Cauchy-Schwartz, triangle inequality.

Orthonormal basis. Linear independence and coordinates.

Gram-Schmidt.

Orthogonal transformations.

T € L(V,V) orthogonal <= ||z| = ||Tz| for all z € V.

An n x n matrix is orthogonal <= the columns form an Orthonormal basis
<= rows form an orthonormal basis <= A'A = I.

T € L(V,V) orthogonal <= there exists an orthonormal basis {u1, ..., u,}
such that {Twus,...,Tu,} is an orthonormal basis <= there exists an
orthonormal basis B = {u1, ..., uy,} such that (T)%(T)p = I.

Rotation matrices in R2.

Reflection matrices in R?, and classification of all orthogonal 2 x 2 matrices.

e Determinants

Definition of the determinant function D : (F")™ — F.

Swaps: D(v1,...,0i—1,0j, Vg1, -, Vj—1, V4, Vjg1, .-, Up) = —D(v1,...,0p)
for i # j.
D(Ul, ey Vi1, U5 + Zj;ﬁi A5V, Vgl Un) = D(’Ul, N ,’Un).
v1,..., 0y linearly dependent implies D(vy,...,v,) = 0.
Multi-linearity: D(vy,...,v;—1,0; + 0 0i11,...,0n) =

i 1
D(’Ul, e 7Ui—17'UZ'arUi+17 e ,’Un) —|— l)(?}l7 e 7Ui—1avi 7’01'_;,_1, e ,’Un)
Computing by column operations. If vy, ..., v, are L.I., then reduce vy, ..., v,
to ei,...,e, using elementary column operations. Then D(v1,...,v,) =

(—1)# swaps /product of all factors you scale by.

Uniqueness: D, D’ two functions satisfying the axioms then D = D’.
Existence: Define v’ to be the vector v with first coordinate deleted. Let
vj = Y. aije;, and define (inductively)

n

D(vi,...,v,) = Z(fl)l+ja17jD(v’1, UGV, )

Jj=1

Prove D satisfies axioms as follows:

Show D(eq,...,e,) = 1.

Show D(auy,va,...,v,) = aD(vy,..., ).

Show D(vy + va,va,...,v,) = aD(v1,...,v,).

Show swaps: D(v1,...,0j,...,0;,...,0,) = —D(v1,...,v,) for i # j.

= (a;;). Ci; = A with i*" row and j' column deleted. Show |A| =
Zj(—l)”jai,j\ci,ﬂ for any 1.

Show properties of |A| with respect to row operations.

Show |A| = >,(=1)"a, ;|C; 4| for any j.

|A] =0 <= A is not invertible.

D% % ¥ %



L32, Fri 11/13.

L33, Mon 11/16.

L34, Wed 11/18.

L35, Fri 11/20.

L36, Mon 11/23.

— Show |AB| = |A||B|.

Eigenvalues

— XA € F is an eigenvalue of T if dv # 0 3 Tv = Av. This v is called an
eigenvector, with eigenvalue A. E) = {v € V | Tv = Av} is called the
eigenspace of the eigenvalue \.

— Characteristic polynomial f(\) = det(A — AI).

— Roots of f are exactly eigenvalues of A.

— If X is an eigenvalue of A, then E) = ker(A — AI), and can explicitly find this
by row reduction. (Simple example)

— If Ais 2 x 2, then f(\) = A2 — tr(A)\ + det(A), where tr(A) is the trace of
the matrix A, defined to be the sum of the diagonal entries.

— T is diagonalisable if there exists a basis of V' consisting of eigenvectors of T’
(called an eigenbasis).

— Matrix of T with respect to the eigenbasis is a diagonal matrix with the
eigenvalues on the diagonal.

— If Ais a matrix, {v1,...,v,} an eigenbasis, then P"*AP = D where P is the
matrix with vy ..., v, as columns, D the diagonal matrix with the eigenvalues
on the diagonal.

— Computing A™ for diagonalisable matrices. Computing Fibonacci numbers
as an application.

— (Unrigorous) For any (real) matrix A and almost any v € R", A™v aligns
with the eigenspace corresponding to the eigenvalue of A with largest absolute
value.

— Ranking of sports teams in a tournament: Form a matrix A with outcomes
of the tournament (e.g. put in the i, j*' entry the score of i*" team vs the
4*" team). Such a matrix will necessarily have a positive eigenvalue, and an
eigenvector with all positive coordinates. The coordinates of this eigenvector
will be the relative ranks of each team.

— A field F is algebraically closed if every non-constant polynomial with co-
efficients in F has a root in F. (E.g. R is not algebraically closed, but C
is).

— If ais aroot of f, then f(z) = (z—a)*g(x) for some k € N, and a polynomial
g such that g(a) # 0. The number k is called the multiplicity of the root a.

- If T € L(V,V), pick a basis B of V, and let A be the matrix of T with
respect to the basis B. Define the characteristic polynomial of T' by f()\) =
det(A — \I).

— Proof that the definition above is independent of the basis B.

— If X\ is an eigenvalue of T, define the algebraic multiplicity of A to be the
multiplicity of A as a root of the Characteristic polynomial of T'. Define the
geometry multiplicity to be dim(F)) = dim(ker(T' — AI)).

— For example (}9) has eigenvalue 1 with both algebraic and geometric mul-
tiplicity 1. And (1) has eigenvalue 1 with algebraic multiplicity 2, and
geometric multiplicity 1.

— (Proof on homework) The geometric multiplicity is always less than or equal
to the algebraic multiplicity.

— (Proof on homework) Let F be algebraically closed. T is diagonalisable if
and only if for every eigenvalue of T, the algebraic multiplicity is equal to the
geometric multiplicity.

— Let A be an eigenvalue of T. We say v € V| v # 0 is a generalized eigenvector
of T with eigenvalue \ if for some k > 1, (T — A)*v = 0. Tf k = 1, then v is

exactly an eigenvector of T'.



— While you can not always guarantee the existence of a basis consisting of
eigenvectors, you can guarantee the existence of a basis consisting of gener-
alized eigenvectors. (This is a consequence of the Cayley-Hamilton theorem,
and will be proved in homework.)

— (Cayley-Hamilton Theorem) If V is finite dimensional, F' is algebraically
closed, T € L(V,V) and f is the characteristic polynomial of T, then f(T") =
0. [The assumption that F is algebraically closed is redundant.]

x The proof is by induction.

x If F is algebraically closed, T has an eigenvalue (because the characteristic
polynomial has at least one root). Let A; be the eigenvalue, and v; be the
associated eigenvector.

x Add vectors vs,...,v, to get a basis of V, and let A be the matrix of T
with respect to this basis. Then A has the form

//\1 ‘ % .- *\
0

: B
0

* Thus f(A) = (A1 — N)g(A), where g is the characteristic polynomial of B.
* By block multiplication

(0% o w\ fg) =  x
0 0

: B : g(B)
0 0
% Since g(B) = 0 by the inductive hypothesis, the above product is 0. QED.
L87, Mon 11/30. e Spectral theorem

— Let V be a vector space over C. We say (-,) : V x V — C be a complex
inner product if
* (Positive definite) Vv € V, (v,v) € R and (v,v) > 0. (Non-degenerate)

Further (v,v) =0 <= v =0.

« (‘Bilinear’) Yu,v,w € V, (u+v,w) = (u,w) + (v,w), and (u,v + w) =
{(u,v) + (u,w). Further, YA € C, and u,v € V, we have (\u,v) = A\ u,v),
and (u, Av) = A(u,v). Note the complex conjugate when X is in the first
coordinate. -

*  (‘Symmetric’) Yu,v € V, (u,v) = (v,u).

— All theorems for real inner products have appropriate analogues for complex
inner products. For example, the Cauchy-Schwartz inequality: |(u,v)| <
[[ull[[v]]-

* Here’s a proof: Case I: Assume (u,v) € R. As before, let f(A) = (u +
Av,u + Av) for A € R. This is a quadratic function in A which is always
non-negative, and hence must have a non-positive discriminant. This gives
(u,v) < lull[[o]l if (u,v) €R.

* Case II: (u,v) € C and (u,v) # 0. Pick a = % Then (ou,v) =
a(u,v) = |ujv € R. Thus by Case I, |(u,v)| = (au,v) < |aul|||v|| =
lellullllvll = l[ulllv]], since |af = 1.

x Case III: (u,v) = 0 — immediate.

— Let T € L(V,V). We say T* € L(V,V) is the adjoint of T if Yu,v € V,
(Tu,v) = (u, T*v).



L38, Pri 12/4.

If the adjoint exists, it is unique. That is if T7, T are two adjoint’s of T', then

Ty =Ts.

If V is finite dimensional, then every T € £(V, V') has an adjoint.

x Proof: Case I —V = C". Then if A is the matrix of 7', immediately check
that the linear transformation given by the matrix A* = A* is the adjoint
of T.

x Case II: Repeat Gram-Schmidt for complex inner-products and prove that
V as an orthonormal basis. Now using an orthonormal basis, you can use
the formula from the previous case.

T € L(V,V) is Hermitian if T* = T.

If T is Hermitian and A is an eigenvalue of T then A € R. (Proof: If Tv = v,

then Av,v) = (Tv,v) = (v, Tv) = A(v,v).)

If T is Hermitian and Ai, Ao are two distinct eigenvalues are orthogonal.

Proof: Let Tvy = A\v1, Tvg = Asvo. Then

A1 (v1,v2, =) A1 (v1,v2, =) (Tv1,v2) = (v1,Tv2) = Ag (1, V2)

(Spectral Theorem) If TT* = T*T, then T is diagonalisable by an orthonor-
mal basis. (The converse is also true as long as you insist the eigenbasis is
orthonormal).

If ST =T8S, then S and T have a common eigenvector.

*x Proof: Let A be an eigenvalue of T, and E\(T) = ker(T — M\). If v €
E\(T), then (T — AXI)Sv = S(T — Al)v = 0, and hence Sv € E\(T).
This shows S € L(EA(T), Ex(T)). Since C is algebraically closed, S :
E\(T) — Ex(T') must have an eigenvector v € E5(T). This is the common
eigenvector.

Proof of the spectral theorem (Forward direction).

* By induction on dim (V). If dim(V') = 1 there is nothing to do.

x Assume the theorem for all vector spaces of dimension n — 1. Use the
lemma to pick vy that is a common eigenvector of T" and T*.

x Let W = {w | (w,v1) = 0}.

* Note T € L(W, W), since (Tw,v1) = (w, T*v1) = XNj{w,v1) = 0.

* Similarly T* € L(W,W).

* Let T|w denote the linear transformation T restricted to the subspace W.
Then (T|w)* = T*|w, and hence (T|w)*T|w = T|w(T|w)*, and by the
inductive hypothesis, there exists vs,...,v, an orthonormal basis of W
consisting of eigenvectors of T'|yy .

* {v1,...,v,} is the desired basis.



