Assignment 12: Assigned Wed 11/18. Due Tue $11 / 24$ by 10:00AM
Please note the due date is Tuesday at 10:00AM because there will be no class the Wednesday before Thanksgiving. You may turn in your homework in class on Monday $11 / 23$, or slip it under my door anytime before 10:00AM on Tuesday 11/24.

1. (a) Diagonalise the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. That is, find a matrix $P$ such that $P^{-1} A P$ is a diagonal matrix. Use this to compute an explicit formula for $A^{n}$.
(b) Recall, the Fibbonacci numbers are defined by $f_{0}=0, f_{1}=1$ and $f_{n+1}=f_{n}+f_{n-1}$. In class we saw that $\binom{f_{n+1}}{f_{n}}=A^{n}\binom{f_{1}}{f_{0}}$, where $A$ is the matrix from the previous subpart. Use the previous subpart to compute an explicit formula for $f_{n}$.
(c) Suppose we define a different 'Fibbonacci' sequence by $f_{n+1}=4 f_{n}-5 f_{n-1}+2 f_{n-2}$. Show that for some appropriate matrix $A$,

$$
\left(\begin{array}{c}
f_{n+2} \\
f_{n+1} \\
f_{n}
\end{array}\right)=A^{n}\left(\begin{array}{c}
f_{2} \\
f_{1} \\
f_{0}
\end{array}\right)
$$

Diagonalize this matrix as above, and use this to find a formula for $f_{n}$ explicitly in terms of $f_{0}, f_{1}$ and $f_{2}$.
2. If $A$ is an $n \times n$ matrix, we define it's trace (denoted by $\operatorname{tr}(A))$ to be the sum of the diagonal entries. Explicitly, if $A=\left(a_{i, j}\right), \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i, i}$.
(a) If $A, B$ are $n \times n$ matrices, show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Consequently if $B=P^{-1} A P$ for some $n \times n$, invertible matrix $P$, show that $\operatorname{tr}(B)=\operatorname{tr}(A)$.
(b) If $V$ is a $n$ dimensional vector space, and $T \in L(V, V)$, we define $\operatorname{tr}(T)$ as follows: Pick any basis $B$ of $V$. Let $A$ be the matrix representation of $T$ with respect to the basis $B$. Define $\operatorname{tr}(T)=\operatorname{tr}(A)$. Show that this is well defined. Namely, show that $\operatorname{tr}(T)$ is independent of the basis $B$.
3. If $A$ is an $n \times n$ matrix, show that it's charactoristic polynomial is of the form

$$
f(\lambda)=(-\lambda)^{n}+\operatorname{tr}(A)(-\lambda)^{n-1}+\cdots+\operatorname{det}(A)
$$

[This generalizes what we saw in class for $2 \times 2$ matrices.]
4. Let $F$ be algebraically closed, $V$ be a finite dimensional vector space over $F, T \in L(V, V)$.
(a) If $\lambda$ is an eigenvalue of $T$, show that the geometric multiplicity of $\lambda$ is less than or equal to the algebraic multiplicitly of $\lambda$.
(b) If $T$ is diagonalisable, then show that for every eigenvalue $\lambda$, the algebraic and geometric multiciplicities are equal.

