Assignment 7: Assigned Wed 10/07. Due Wed 10/14

1. Section 13. 1, 7, 11
2. Section 12. 3(b) \& (d), 4,5
3. Let U be a finite dimensional vector space over a field F, and $T \in \mathcal{L}(U, U)$. Show that the following are equivalent:
(a) T is invertible.
(b) T is injective.
(c) T is surjective.
4. Let $T \in L(U, V), B=\left(b_{1}, \ldots, b_{m}\right)$ an ordered basis of U, and $C=\left(c_{1}, \ldots, c_{n}\right)$ be an ordered basis of V.
(a) Show that there exists a matrix M such that for all $u \in U,(T u)_{C}=M(u)_{B}$. What are the dimensions of this matrix? What meaning/significance do the columns of this matrix have (in relation to the two basis B and C)?
(b) Show that $\operatorname{dim}(\operatorname{Im}(T))=$ col. $\operatorname{rank}(M)$. [Here col. $\operatorname{rank}(M)$ denotes the column rank of M]
(c) Show that $\operatorname{dim}(\operatorname{ker}(T))=m-\operatorname{row} \operatorname{rank}(M)$. [Here row $\operatorname{rank}(M)$ denotes the row rank of M]
(d) Show that the row rank and column rank of M are equal.

Assignment 8: Assigned Wed 10/14. Due Wed 10/21

1. Section 12. 7(c), (e) [For 7, feel free to use any method you like, not just that in Example C].
2. If $S, T \in L(U, U)$ are invertible, show $S T$ is invertible. Express $(S T)^{-1}$ in terms of S^{-1} and T^{-1}.
3. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find a necessary and sufficient condition for A to be invertible. Find an explicit formula for A^{-1}.
4. Let A be a $m \times n$ matrix. We define the transpose of the matrix A^{t} (sometimes denoted by A^{*}) to be the matrix obtained by interchanging the rows and columns of the matrix. For example, $\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)^{\mathrm{t}}=\left(\begin{array}{cc}a & d \\ b & e \\ c & f\end{array}\right)$. If A is an $m \times n$ matrix, B is an $n \times n^{\prime}$ matrix, show that $(A B)^{\mathrm{t}}=B^{\mathrm{t}} A^{\mathrm{t}}$.
5. Let $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{m}$, and suppose you want to find a basis for $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$. The algorithm used so far is as follows: Put the vectors in echelon form, and pick the non-zero ones. They will be a basis of V.

Suppose now you wanted to reduce $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ to a basis of V. That is you wanted to find some subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ which is a basis of V. In this case, the above algorithm will not help you! Here's an algorithm that works: First form a matrix with v_{1}, \ldots, v_{n} as columns. Now put this matrix in row reduced echelon form. Now, for each i, if the $i^{\text {th }}$ column in the reduced matrix contains a leading 1 , pick the vector v_{i} to be part of your basis. If the column does not contain a leading 1 , don't pick the vector. This algorithm will give you a method to reduce $\left\{v_{1}, \ldots, v_{n}\right\}$ to a basis of V.
(a) Using the above algorithm, reduce the following sets to a linearly independent set with the same span.
(i) $\left\{\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}-2 \\ 3 \\ 1\end{array}\right)\right\}$
(ii) $\left\{\left(\begin{array}{r}1 \\ -2 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{r}2 \\ 1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{r}-1 \\ -8 \\ 4 \\ 5\end{array}\right),\left(\begin{array}{r}4 \\ 7 \\ -5 \\ -1\end{array}\right)\right\}$
(b) Prove that the above algorithm works in general.
(c) Explain how you would adapt this algorithm if \mathbb{R}^{m} above was replaced with an abstract (finite dimensional) vector space U.
6. Let $V=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f\right.$ is continuous, and $\left.\int_{-\infty}^{\infty} f(x)^{2} d x<\infty\right\}$.
(a) Show that V is a vector space. [There is only one axiom that is hard to check. Only prove this one.]
(b) Let $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x$. Show that this defines an inner product on V.
(c) Show that if $f, g \in V,\left|\int_{-\infty}^{\infty} f(x) g(x) d x\right| \leqslant\left(\int_{-\infty}^{\infty} f(x)^{2} d x\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty} g(x)^{2} d x\right)^{\frac{1}{2}}$.

