Assignment 7: Assigned Wed 10/07. Due Wed 10/14

- 1. Section 13. 1, 7, 11
- 2. Section 12. 3(b) & (d), 4, 5
- 3. Let U be a finite dimensional vector space over a field F, and $T \in \mathcal{L}(U, U)$. Show that the following are equivalent:
 - (a) T is invertible.
 - (b) T is injective.
 - (c) T is surjective.
- 4. Let $T \in L(U, V)$, $B = (b_1, \ldots, b_m)$ an ordered basis of U, and $C = (c_1, \ldots, c_n)$ be an ordered basis of V.
 - (a) Show that there exists a matrix M such that for all $u \in U$, $(Tu)_C = M(u)_B$. What are the dimensions of this matrix? What meaning/significance do the columns of this matrix have (in relation to the two basis B and C)?
 - (b) Show that $\dim(\operatorname{Im}(T)) = \operatorname{col.} \operatorname{rank}(M)$. [Here col. $\operatorname{rank}(M)$ denotes the column rank of M]
 - (c) Show that $\dim(\ker(T)) = m \operatorname{row} \operatorname{rank}(M)$. [Here row $\operatorname{rank}(M)$ denotes the row rank of M]
 - (d) Show that the row rank and column rank of M are equal.

Assignment 8: Assigned Wed 10/14. Due Wed 10/21

- 1. Section 12. 7(c), (e) [For 7, feel free to use any method you like, not just that in Example C].
- 2. If $S, T \in L(U, U)$ are invertible, show ST is invertible. Express $(ST)^{-1}$ in terms of S^{-1} and T^{-1} .
- 3. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find a necessary and sufficient condition for A to be invertible. Find an explicit formula for A^{-1} .
- 4. Let A be a $m \times n$ matrix. We define the transpose of the matrix A^{t} (sometimes denoted by A^{*}) to be the matrix obtained by interchanging the rows and columns of the matrix. For example, $\begin{pmatrix} a & b & c \\ b & e & f \end{pmatrix}^{t} = \begin{pmatrix} b & a \\ b & e \\ c & f \end{pmatrix}^{t} = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$. If A is an $m \times n$ matrix, B is an $n \times n'$ matrix, show that $(AB)^{t} = B^{t}A^{t}$.
- 5. Let $\{v_1, \ldots, v_n\} \subseteq \mathbb{R}^m$, and suppose you want to find a basis for $V = \operatorname{span}\{v_1, \ldots, v_n\}$. The algorithm used so far is as follows: Put the vectors in echelon form, and pick the non-zero ones. They will be a basis of V.

Suppose now you wanted to reduce $\operatorname{span}\{v_1, \ldots, v_n\}$ to a basis of V. That is you wanted to find some subset of $\{v_1, \ldots, v_n\}$ which is a basis of V. In this case, the above algorithm will not help you! Here's an algorithm that works: First form a matrix with v_1, \ldots, v_n as columns. Now put this matrix in row reduced echelon form. Now, for each *i*, if the *i*th column in the reduced matrix contains a leading 1, pick the vector v_i to be part of your basis. If the column does not contain a leading 1, don't pick the vector. This algorithm will give you a method to reduce $\{v_1, \ldots, v_n\}$ to a basis of V.

(a) Using the above algorithm, reduce the following sets to a linearly independent set with the same span.

(i)
$$\left\{ \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} -2\\3\\1 \end{pmatrix} \right\}$$
 (ii) $\left\{ \begin{pmatrix} 1\\-2\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-8\\4\\5 \end{pmatrix}, \begin{pmatrix} 4\\7\\-1\\-1 \end{pmatrix} \right\}$

- (b) Prove that the above algorithm works in general.
- (c) Explain how you would adapt this algorithm if \mathbb{R}^m above was replaced with an abstract (finite dimensional) vector space U.
- 6. Let $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous, and } \int_{-\infty}^{\infty} f(x)^2 dx < \infty \}.$
 - (a) Show that V is a vector space. [There is only one axiom that is hard to check. Only prove this one.]
 - (b) Let $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x) dx$. Show that this defines an inner product on V.
 - (c) Show that if $f, g \in V$, $|\int_{-\infty}^{\infty} f(x)g(x) dx| \leq (\int_{-\infty}^{\infty} f(x)^2 dx)^{\frac{1}{2}} (\int_{-\infty}^{\infty} g(x)^2 dx)^{\frac{1}{2}}$.