Assignment 3: Assigned Wed 09/09. Due Wed 09/16

1. Section 4. 9, 10.
2. Section 5. 1, 3, 4, 5 .
3. Let p be prime, $F=\{0,1, \ldots, p-1\}$ with addition and multiplication defined modulo p. (This is called 'the finite field of order p '). Let $n \in \mathbb{N}$. How many one dimensional subspaces does F^{n} have?
4. (a) Let V be a vector space, and I some (possibly infinite) set. Suppose for every $i \in I$, we are given a set C_{i}, which is a linearly independent subset of V. Suppose further for every $i, j \in I$, either $C_{i} \subseteq C_{j}$ or $C_{j} \subseteq C_{i}$. Show that $\bigcup_{i \in I} C_{i}$ is a linearly independent subset of V. [Recall that an infinite set S is called linearly independent if every finite subset is linearly independent. This problem is the key step in showing that every (non necessarily finitely generated) vector space has a basis. As soon as you prove the result in this problem, the axiom of choice (or more precisely 'Zorn's Lemma') will guarantee the existence of a maximal linearly independent set. From class, we know this must be a basis.]
(b) The analogue of the above subpart for spanning sets is false! Find a counter example. Namely, let V be a vector space. Find a (possibly infinite) set I and a collection of sets $\left\{C_{i} \mid i \in I\right\}$ such that for every $i \in I, C_{i} \subseteq V$, and $\operatorname{span}\left(C_{i}\right)=V$. Further, for every $i, j \in I$, either $C_{i} \subseteq C_{j}$ or $C_{j} \subseteq C_{i}$. However $\operatorname{span}\left(\bigcap_{i \in I} C_{i}\right) \subsetneq V$.

Assignment 4: Assigned Wed 09/16. Due Fri 09/25
This homework is intentionally shorter than your other homework assignments in light of your midterm. It will also be accepted on Friday, instead of on doomsd. . . erm. Wednesday.

1. If S is linearly independent, and $u \notin \operatorname{span}(S)$, then show that $S \cup\{u\}$ is linearly independent. [I used this fact in class, but did not write down an iron clad proof of it. Note also the implicit assumptions in the problem: Namely we assume V is a vector space over some field F, and that $S \subseteq V$. Further we assume that $u \in V$ (or more precisely $u \in V-S$). Once you get accustomed to it, this is what your problems will look like.]
2. Let V be a vector space over some field F. Prove that the following statements are equivalent:
(a) B is a basis of V.
(b) B is a maximal linearly independent subset of V. Namely B is linearly independent, and if $C \supsetneq B$, then C is linearly dependent.
(c) B is a minimal spanning set. Namely $\operatorname{span}(B)=V$, and if $C \subsetneq B$, then $\operatorname{span}(C) \subsetneq V$.
[The usual way to prove that a list of statements are equivalent is to prove (a) implies (b), (b) implies (c) and finally (c) implies (a). While you're free to use your own favourite set of implications, I recommend following the above structure in this case.]
3. Let W be a finitely generate vector space, and $U, V \subseteq W$. Let $B=\left\{z_{1}, \ldots, z_{k}\right\}$ be a basis of $U \cap V$, with the convention that if $U \cap V=\{0\}$, then $k=0$ and $B=\emptyset$. Extend B to a basis of U by adding $C=\left\{u_{1}, \ldots, u_{m}\right\}$ (i.e. $B \cup C$ is a basis of U). Again we use the convention that if $U \cap V=U$, then $m=0$, and $C=\emptyset$. Similarly, extend B to a basis of V by adding $D=\left\{v_{1}, \ldots, v_{n}\right\}$. Show that $B \cup C \cup D$ is a basis of $U+V$. Conclude $\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)$.
