Assignment 2: Assigned Wed 09/02. Due Wed 09/09
Problems marked with a *are optional, and should not be turned in with your regular homework. Numbered problems refer to problems in your textbook (Curtis)
\star 1. Section 3. 1, 2, 3, 4.
2. Section 3. 6, 9 [You might want to read pages $21-26$ before doing these problems.]
3. Section 4. 1, 3, 5, 7, 8. [For 1, 3, just 'Yes' or 'No' will suffice. No need to provide verbose justification.]
4. Let $U \subseteq \mathbb{R}^{3}$ be the region defined by $x_{1}^{2}+2 x_{2}^{2} \leqslant 3 x_{3}^{2}$. Draw a sketch of U, and find an English word that describes it's shape. Show that U is not a subspace of \mathbb{R}^{3}.
5. The conclusion of both subparts below will follow directly from a general theorem we will prove later. However it's worth while doing them out explicitly by hand at least once...
(a) Suppose u_{1}, u_{2} are any two linearly independent vectors in \mathbb{R}^{2}, then show (by direct computation) that $\operatorname{span} u_{1}, u_{2}=\mathbb{R}^{2}$.
(b) Let $V=\mathbb{R}^{3}$, and $U \subseteq \mathbb{R}^{3}$ be the plane $x_{1}+x_{2}+x_{3}=0$. Show (by direct computation) that if u_{1}, u_{2} are any two linearly independent vectors in U, then $U=\operatorname{span}\left\{u_{1}, u_{2}\right\}$.
6. Here's another proof showing that the dimension of a vector space is well defined.
(a) Let F be any field, $m<n \in \mathbb{N}$, and $\alpha_{i j} \in F$ be given. Show that there exists $x_{1}, x_{2}, \ldots, x_{n} \in$ F not all 0 such that

$$
\begin{gathered}
\alpha_{11} x_{1}+\alpha_{12} x_{2}+\cdots+\alpha_{1 n} x_{n}=0 \\
\alpha_{21} x_{1}+\alpha_{22} x_{2}+\cdots+\alpha_{2 n} x_{n}=0 \\
\vdots \\
\alpha_{m 1} x_{1}+\alpha_{m 2} x_{2}+\cdots+\alpha_{m n} x_{n}=0 .
\end{gathered}
$$

[Hint: In words this problem says that any system of homogeneous linear equations has a non-zero solution, provided you have more variables than equations. The hint is to use induction. But don't get carried away and use some sort of fancy double induction trick on m and n. You can do this directly with induction on one of the variables.]
(b) Suppose now V is a vector space over $F, m<n \in \mathbb{N}$, and $V=\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}$. Show (using the previous subpart) that any subset of n vectors in V must be linearly dependent. [Hint: Let v_{1}, \ldots, v_{n} be n vectors in V, and express each v_{j} as a linear combination $\sum_{i} \alpha_{i j} u_{i}$. Now somehow reduce linear dependence of v_{j} 's to solving equations like in the previous subpart. Of course, as we've seen in class, this subpart immediately implies that any two (finite) basis in a vector space have the same number of elements.]
(c) The statements in parts (a) and (b) above are really equivalent. Above you should have shown that part (a) implies part (b). Now do the converse: Namely, assuming the result of part (b) above, show that the result in part (a) is true.

