Assignment 14: Assigned Sat 12/05. Due Never.

1. (a) Show that $\left(T^{*}\right)^{*}=T$.
(b) Show that $(S T)^{*}=T^{*} S^{*}$.
2. Let $S, T \in L(V, V)$ be such that $S T=T S$.
(a) If S and T are diagonalisable, show that there exists a basis of V consisting of common eigenvectors of S and T.
(b) However, not every eigenbasis of S is an eigenbasis of T. Give an example of S, T such that $S T=T S$, and an eigenbasis of S which is not an eigenbasis of T.
3. Prove the converse of the spectral theorem: Namely, if $T \in \mathcal{L}(V, V)$ has an orthonormal eigenbasis, then show $T T^{*}=T^{*} T$.
4. Let V be a finite dimensional complex vector space with innerproduct $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$. We say $T \in \mathcal{L}(V, V)$ is unitary if $T^{*}=T^{-1}$ (this is the complex analogue of 'orthogonal').
(a) Show that T is unitary if and only if for every orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V, the set $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is an orthonormal basis of V.
(b) If λ is an eigenvalue of T, show that $|\lambda|=1$.
(c) Is T diagonalisable?
5. Let V be a finite dimensional vector space over \mathbb{R}, and $\langle\cdot, \cdot\rangle$ be a (real) innerproduct on V. Let $T \in \mathcal{L}(V, V)$.
(a) If T is symmetric, show that T is diagonalisable, and further the eigenbasis can be chosen to be orthonormal.
(b) Conversely, if T has an orthonormal eigenbasis, show T must be symmetric? (Note how much more general the complex case was!).
(c) (A little harder, and I won't put up a solution for this part.) If however $T^{*} T=T T^{*}$, show that there exists a basis of V such that the matrix of T with respect to this basis has the form

$$
\left(\begin{array}{ccccccc}
\lambda_{1} & & & & & & \\
& \ddots & & & & & \\
& & \lambda_{k} & & & & \\
& & & r_{1} \cos \theta_{1} & r_{1} \sin \theta_{1} & & \\
\\
& & & r_{1} \sin \theta_{1} & r_{1} \cos \theta_{1} & & \\
& & & & & \ddots & \\
& & & & & & r_{k^{\prime}} \cos \theta_{k^{\prime}} \\
& & & & & r_{k^{\prime}} \sin \theta_{k^{\prime}} \\
& & & & & r_{k^{\prime}} \sin \theta_{k^{\prime}} & r_{k^{\prime}} \cos \theta_{k^{\prime}}
\end{array}\right)
$$

