Assignment 15 (assigned 2018-05-02, due Never).

- 1. Let $u, v : \mathbb{R}^3 \to \mathbb{R}^3$ be C^2 vector fields, $f, g : \mathbb{R}^3 \to \mathbb{R}$ be C^2 scalar functions. Prove the following identities.
 - (a) $\nabla(fg) = f\nabla g + g\nabla f$. (b) $\nabla \cdot (fu) = (\nabla f) \cdot u + f\nabla \cdot u$. (c) $\nabla \times (fu) = f\nabla \times u + (\nabla f) \times u$ (d) $\nabla \times (u \times v) = u(\nabla \cdot v) - v(\nabla \cdot u) + (v \cdot \nabla)u - (u \cdot \nabla)v$ (e) $\nabla \cdot (u \times v) = (\nabla \times u) \cdot v - u \cdot (\nabla \times v)$ (f) $\nabla \times (\nabla u) = 0$ (g) $\nabla \cdot (\nabla \times u) = 0$ (h) $\nabla \times (\nabla \times u) = -\Delta u + \nabla (\nabla \cdot u)$
- 2. Let $F = (2x, y^2, z^2)$.
 - (a) Compute $\int_{\Sigma} F \cdot \hat{n} \, dS$, where $\Sigma \subseteq \mathbb{R}^3$ is the sphere of radius 1.
 - (b) Compute $\oint_{\Gamma} F \cdot d\ell$, where Γ is the intersection of Σ above and the plane x + 2y + 3z = 0.
- 3. In each of the following cases show that

$$\int_U (\nabla \cdot v) \, dV \neq \int_{\partial U} v \cdot \hat{n} \, dS$$

Also explain why this does not contradict the divergence theorem.

- (a) $U = B(0, 1) \subseteq \mathbb{R}^3$, and $v = x/|x|^4$.
- (b) $U = \{x \in \mathbb{R}^3 \mid z > x^2 + y^2\}$, and $v(x, y, z) = (0, 0, e^{-z})$.
- 4. (Greens identity) Let $U \subseteq \mathbb{R}^3$ be a bounded domain whose boundary is a C^1 surface. If $f, g: U \to \mathbb{R}$ be C^2 , show

$$\int_{U} (f\Delta g) \, dV = \int_{\partial U} f\nabla g \cdot \hat{n} \, dS - \int_{U} (\nabla f \cdot \nabla g) \, dV$$

Recall $\Delta g = \sum_i \partial_i^2 g = \nabla \cdot (\nabla g)$, and by convention \hat{n} is the *outward pointing* unit normal on ∂U .

5. Suppose $U, V \subseteq \mathbb{R}^3$ are domains, $\varphi : U \to V$ is C^2 and $v : V \to \mathbb{R}^3$ is C^1 . Define $w = \operatorname{adj}(D\varphi)(v \circ \varphi) : U \to \mathbb{R}^3$. Show that

$$\nabla \cdot w = \det(D\varphi)(\nabla \cdot v) \circ \varphi.$$

[This was a detail used in the proof of the divergence theorem.]

6. (Optional challenge) Suppose $u : \mathbb{R}^3 \to \mathbb{R}^3$ is C^1 . Show that $\nabla \cdot u = 0$ if and only if there exists a C^1 vector field $v : \mathbb{R}^3 \to \mathbb{R}^3$ such that $u = \nabla \times v$.