21-269 Vector Analysis: Midterm 1.

2017-02-22

- This is a closed book test. No electronic devices may be used. You may not give or receive assistance.
- You have 50 minutes. The exam has a total of 5 questions and $40\varepsilon 1$ points.
- You may use any result proved in class or any regular homework problem **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)
- The first question is evil. The remaining are roughly in increasing order of difficulty. Good luck $\ddot{\sim}$.

A wrong or blank answer on the first question is worth -1 points. The points on the remaining questions are multiples of ε , where $\varepsilon > 0$ is a small number that will be chosen later to ensure the "curve" is a nice bell curve with mean 0, as drawn in class.

- 1. What is $\pi^e e^{\pi}$ to 12 significant digits? (No electronic devices OS!)
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x) = |x|.
 - (a) Find the derivative of f at the point (3, 4). Explain why f is differentiable at this point.
 - (b) Is f differentiable at 0? Prove your answer.
- 10 ε 3. Suppose $a \in \mathbb{R}^2$, $\alpha, \beta \in \mathbb{R}^3$ and $f, g: \mathbb{R}^2 \to \mathbb{R}^3$ are such that $\lim_{x \to a} f(x) = \alpha$ and $\lim_{x \to a} g(x) = \beta$. Show directly using the ε - δ definition that $\lim_{x \to a} (2f(x) 3g(x))$ exists.
- 10ε 4. True or false:

 5ε

 5ε

If $f: (0,1) \to \mathbb{R}$ is uniformly continuous, then the sequence $(f(\frac{1}{n}))$ is convergent.

Prove it, or find a counter example.

 10ε 5. True or false:

If $f: [0,1] \to [0,1]$ is continuous, then there exists $x \in [0,1]$ such that f(x) = x.

Prove it, or find a counter example.