1. Find the full Fourier series of the function \(f(x) = x \) on the interval \((-\pi, \pi)\).

2. For a general function \(f : [-\pi, \pi] \to \mathbb{R} \), find \(\int_{-\pi}^{\pi} f(x)^2 \, dx \) in terms of the coefficients of its full Fourier series. Use this to compute \(\sum_{n=1}^{\infty} \frac{1}{n^2} \). [This was HW5, Q2(a).]

3. Let \(D = \{ x \in \mathbb{R}^2 \mid |x| \leq a \} \) be a disk of radius \(a \). Let \(u \) be a function such that \(\Delta u = 0 \) on the interior of \(D \), and \(u(x) \geq 0 \) for all \(x \in D \). If \(0 < r < a \) and \(|x| \leq r \), show that
 \[
 u(x) \leq \left(\frac{a + r}{a - r} \right) u(0).
 \]
 [HINT: Use the Poisson formula; this is the Harnack inequality and was on HW6 Q5]

4. Suppose \(u \) solves the heat equation \(\partial_t u - \kappa \partial_x^2 u = 0 \) for \(x \in (0, \pi) \) and \(t > 0 \) with Dirichlet boundary conditions \(u(0, t) = u(\pi, t) = 0 \) and initial data \(u(x, 0) = f(x) \). You may assume \(\kappa > 0 \) and \(\int_0^{\pi} |f(x)|^2 \, dx < \infty \). True or false: Does there exist \(\alpha > 0 \) such that
 \[
 \lim_{t \to \infty} e^{\alpha t} \int_0^{\pi} u(x, t)^2 \, dx = 0?
 \]
 Prove it, or find a counter example. [Hint: Separate variables, and use results about the Fourier series. We’ve seen a similar result on the homework before, however, the convergence required in this question is stronger.]