21-268 Multidimensional Calculus: Midterm 1.

Wed 09/30

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 minutes. The exam has a total of 5 questions and 50 points.
- You may use any result from class or homework **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)
- The first two questions are easier than the rest. The last three are comparable in difficulty; though depending on your intuition you may find one easier than the other.

5 1. Let $f(x,y) = \begin{pmatrix} \sin(x)\sin(y) \\ \cos(x^2 + y^2) \end{pmatrix}$. Compute Df.

10 2. Let $f(h, \theta)$ be a differentiable function such that

$$\partial_h f = 2h\theta$$
 and $\partial_\theta f = h^2 - 1$.

Let $g(x,y) = f(xy, x^2 - y^2)$. Compute $\partial_x g$ in terms of x and y. (Your answer should not involve f.)

3. Let
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
 for $(x,y) \neq (0,0)$

(a) Let
$$(u, v) \in \mathbb{R}^2$$
 and $g(t) = f(0 + tu, 0 + tv)$. Does $\lim_{t \to 0} g(t)$ exist? If yes compute it.

- (b) Does $\lim_{(x,y)\to 0} f(x,y)$ exist? Prove your answer.
- 10 4. Let $f : \mathbb{R}^m \to \mathbb{R}^n$ be a function. If for every $i \in \{1, \ldots, n\}$ we have $\lim_{x \to a} f_i(x) = \ell_i$, then show directly using the ε - δ definition that $\lim_{x \to a} f(x) = \ell$. [This was a question on your homework. Please provide a complete proof here, instead of just citing the appropriate question.]

5. Let
$$f(x, y) = xy^{1/3}$$
.

5

5

|5|

- (a) If y > 0, is f differentiable at (x, y)? Prove it. [You don't have to do this explicitly from the limit definition, and can use without proof theorems from class.]
- 10 (b) Is f differentiable at (0,0)? Prove it.