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NUMERICAL STUDIES OF HOMOGENIZATION UNDER A FAST
CELLULAR FLOW∗

GAUTAM IYER† AND KONSTANTINOS C. ZYGALAKIS‡

Abstract. We consider a two dimensional particle diffusing in the presence of a fast cellular flow
confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L2 → ∞,
then the problem homogenizes; this has been well studied. Also well studied is the limit when L is
fixed and A → ∞. In this case the solution averages along stream lines. The double limit as both the
flow amplitude A → ∞ and the number of cells L2 → ∞ was recently studied [G. Iyer et al., preprint,
arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes
occurring at A ≈ L4. This paper numerically studies a few theoretically unresolved aspects of this
problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074]
using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J.
Comput. Phys., 228 (2009), pp. 1030–1055]. Our treatment of the numerical method uses recent
developments in the theory of modified equations for numerical integrators of stochastic differential
equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102–130].
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1. Introduction.

1.1. Physical motivation. Understanding the transport properties of particles
moving in fluid flows subject to molecular diffusion [9, 22] is a problem of widespread
interest. To single out a few of the many applications, we mention atmosphere/ocean
science [6, 33] and flows in heterogeneous porous media [20].

From the modeling point of view, the simplest model is one ignoring inertial
effects. In this case, the equation of motion for the particle is given by the stochastic
differential equation (SDE)

(1.1) dXt = v(Xt, t) dt+ σ dWt,

where Xt ∈ Rd, v(x, t) is the fluid velocity field, and σ is the molecular diffusion.
This is known as the passive tracer model. Different variants of this model are used
in an application-specific context. In many cases modeling the noise in (1.1) as delta
correlated in time might not be enough. For example, in ocean transport [3], the
noise arises from the unresolved velocity scales, which are correlated in time. In other
applications (e.g., rain initiation [8, 33]), one additionally has inertial effects which
cannot be neglected.

1.2. Cellular flows. In order to make such problems amendable to mathemati-
cal analysis, the velocity field v(x, t) is usually assumed to have a specific statistical or
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geometrical structure mimicking features of real fluid flows. In this paper we restrict
our attention to fast, time independent, two dimensional cellular flows. Thus (1.1)
becomes

(1.2) dX = Av(X) dt+ dWt,

where A > 0 is the magnitude of the velocity (more precisely, A is the Péclet num-
ber measuring the ratio between advection and diffusion), W is a standard (two
dimensional) Brownian motion, and v is a divergence-free vector field with “cellular
trajectories” and magnitude 1. A typical example of v is given by

(1.3) v(x) = ∇⊥H
def
=

(−∂2H

∂1H

)
, where H(x1, x2)

def
=

1

2π
sin(2πx1) sin(2πx2).

For simplicity, we will subsequently assume that v is given by (1.3). While the results
we cite are usually valid in more general situations, the fact that ΔH = −4πH
simplifies many of our calculations.

1.3. Known results: Homogenization and averaging. Equation (1.2) con-
tains two natural nondimensional parameters: the number of cells, and the Péclet
number. Homogenization studies the effective behavior of diffusive particles as the
number of cells becomes large (and the Péclet number is held fixed). On long time
scales the particle visits a large number of cells, and classical results [1, 17, 26] show
that it effectively behaves like a rescaled Brownian motion. That is, for t large, the
law of Xt is comparable to the law of

√
DeffWt, where Deff, the effective diffusivity,

is a constant matrix. The effective diffusivity can be obtained by solving a cell prob-
lem [5, 11], and asymptotic behavior as A → ∞ is like

√
Ac0I, where I is the identity

matrix and c0 > 0 is a constant (see [11, 24, 35]).
In contrast, “averaging” studies the limiting behavior of the particle when the

Péclet number A becomes large (and the number of cells is held fixed). On short time
scales when A → ∞ the drift rapidly transports the passive tracer along level sets of
H , and the noise slowly diffuses the tracer across level sets. This results in behavior
that is averaged on level sets (more precisely, on the Reeb graph of the Hamiltonian),
and this has been extensively studied by [12, 21] using the theory of large deviations
and by [2, 30] using PDE methods.

Recently the transition between the averaged and homogenized behaviors was
studied in [16] by confining the rapidly advected passive tracer confined to a large
domain Ω. The trajectories of X (confined to Ω) exhibit qualitatively different be-
havior, depending on the relative size of the Péclet number, A, to the number of cells
in the domain, L2. Theorem 1.3 in [16] shows that when A � L4, trajectories of X
exit the domain immediately after reaching a cell boundary, forcing “ballistic” travel
along separatrices. On the other hand, when A � L4, the expected exit time of X
from Ω is comparable to that of the effective Brownian motion, suggesting that X
exhibits a homogenized behavior.

The different qualitative behavior observed in [16] is nicely illustrated in Figure 1.
For a small Péclet number relative to the number of cells (precisely, A = L = 10),
Figure 1(a) shows trajectories of X resembling those of an effective Brownian motion.
For a large Péclet number relative to the number of cells (precisely A = L4.5, L = 10),
Figure 1(b) shows multiple trajectories of X which move “ballistically” along cell
boundaries.

A heuristic explanation that the behavior of X undergoes a transition at A ≈ L4

can be obtained by equating the expected exit times of the two regimes. If the flow
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Fig. 1. Trajectories of three realizations of the diffusion (1.2).

amplitude is weak, we expect that X will behave like an effective Brownian motion
with effective diffusivity Deff ≈

√
AI. Thus, on average, X should exit Ω in time

L2/|Deff| ≈ L2/
√
A. On the other hand, if the flow amplitude is strong, then X

averages on level sets and diffuses across them. Thus the time X takes to exit the
entire domain should be comparable to the time X takes to exit one cell, which is
of order 1. Equating these two times, the behavior of X should transition between
regimes when L2/

√
A ≈ 1.

1.4. Numerical results. The aim of this paper is to numerically study the
behavior of X in the critical and homogenization regimes. In the averaging regime
A � L4, the asymptotic behavior of the expected exit time is rigorously obtained
in [16]. However, in the homogenization regime A � L4, only upper and lower
bounds are obtained, and not an asymptotic profile. No results are obtained in the
critical regime, and this paper numerically studies some of these issues.

1.4.1. The critical regime. The first question we numerically study is the crit-
ical case A ≈ L4. Our numerical observation was that a small fraction of trajectories
travelled ballistically along separatrices and exited the domain almost immediately
(see [34] for a related anomalous diffusion effect). Further, the remainder of nonbal-
listic trajectories appear to behave exactly like those of an effective Brownian motion.
Specifically, in section 3 we compare the distribution functions of the exit time of
nonballistic trajectories to those of an effective Brownian motion and find a remark-
able agreement. This seems to suggest that the behavior of X in the critical regime
can be decomposed into a very small ballistic component and a large homogenized
component which behaves like an effective Brownian motion.

While the proportion of ballistic trajectories was significant enough to affect the
comparison of density functions, it was too small to significantly affect the expected
exit time. We numerically observed that the expected exit time of all (ballistic and
nonballistic) trajectories of X appeared identical to that of the effective Brownian
motion.

The methods in [16] prove rigorous results in the cases A � L4 and A � L4

(with logarithmic corrections) but do not address the situation where A ≈ L4. Our
numerics suggest that when A ≈ L4 the nonballistic trajectories might still exhibit a
homogenized behavior.
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1.4.2. The homogenization regime. The second question we numerically
study is an issue left open in [16] when A � L4. If we study the expected exit
time of X from a disk, then [16, Proposition 1.5] shows that as A,L → ∞, the ex-
pected exit time converges to the expected exit time of an effective Brownian motion
from the same disk. However, if we consider the expected exit time of X from any
other domain, then the results in [16] show that as A,L → ∞, the expected exit
time is only comparable to the expected exit time of an effective Brownian motion
as A,L → ∞. The failure to obtain an exact limit is a nontrivial obstruction stem-
ming from extraneous terms in the asymptotic expansion. Our numerical simulations
(presented in section 4) suggest that despite theoretical limitations, the expected exit
time of X from a square is exactly the expected exit time of the effective Brownian
motion.

1.4.3. Numerical method. We mention here that the problem of simulating
diffusion in cellular flows at high Péclet numbers has been studied before from a
variety of authors. In particular, different PDE-based methods have been proposed in
the literature, such as local mesh refinement [23], the unwinding method [18], and the
stream-line diffusion method [7]. However, all these methods being PDE based, they
aim to capture in one way or another the boundary layer, something that becomes
increasingly difficult at higher Péclet numbers since then the methods become less
stable.

Recently (see [13]) a combination of analytical and numerical techniques based on
the asymptotic limit as the Péclet number approaches infinity was used. The use of
exact asymptotics for the boundary layer [24] makes the performance of this method
independent of the Péclet number.

In this paper, however, we follow a different approach by simulating individual
stochastic trajectories with a carefully chosen stochastic integrator. This approach
has the advantage that it does not require any specific knowledge of the boundary
layer as in [13], while in addition, being a Monte Carlo method, it allows for the
characterization of higher moments for the exit time τ .

Finally, we comment on the choice of the stochastic integrator used for our sim-
ulations. Equation (1.2) is stiff, and when A is large the standard Euler–Maruyama
method requires a time step which is too small to be practically useful. We instead
use the method developed in [28]. We conclude the paper with a description of the
numerical method and a new, simpler analysis of it based on [36], which extends
the theory of modified equations [32] to more general numerical integrators than the
Euler–Maruyama method.

1.5. Plan of this paper. In section 2 we state a few results from [16] and
provide a brief heuristic explanation. In section 3 we present our numerical results in
the critical regime A ≈ L4. In section 4 we describe the issues in the homogenization
regime A � L4 that could not be addressed by the methods in [16] and present our
numerical results. Finally, we conclude the paper with a description of the numerical
method we used to perform our simulations.

2. The homogenization and averaging regimes. We devote this section to
stating the results from [16] concerning the homogenization and averaging regimes.

Let τ be the exit time of X (defined in (1.2)) from the domain Ω, and let τ̄ (x)
def
= Exτ

denote the expectation of τ . It is well known (see, for instance, [25]) that the expected
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exit time from the domain Ω satisfies the Poisson problem

(2.1)

{
−1

2
Δτ̄ +Av · ∇τ̄ = 1 in Ω,

τ̄ = 0 on ∂Ω.

The results in [16] concern the limit of τ̄ and the principal eigenvalue of the operator
−Δ+Av · ∇ as both the Péclet number and the size of the domain Ω go to infinity.
The result for the expected exit time (stated below) shows that the limit of τ̄ is either
that of the homogenized equations or that of the averaged equations with a sharp
transition at A ≈ L4.

Theorem 2.1 (see [16]). Let Ω = (−L/2, L/2)2 be a square of side length L,
and let τ̄ = τ̄A,L be the solution to (2.1):
(a) Suppose L → ∞, and A = A(L) varies so that A ≈ L4−α for some α ∈ (0, 4).

There exists a constant C = C(α) > 0, independent of A and L, such that

(2.2)
1

C

L2

√
A
τ̄ (x) � C

L2

√
A

whenever |x| � (1− δ)
L

2
.

Consequently, as L → ∞, we have τ̄ → ∞ uniformly on compact sets.
(b) On the other hand, suppose A → ∞, and L = L(A) varies so that A � L4

(more precisely, we need
√
A/(L2 logA logL) → ∞). There exists a constant

C > 0, independent of A and L, such that

(2.3) τ̄(x)2 � C
L2

√
A

logA logL whenever H(x) = 0.

Consequently, if H(x) = 0, then τ̄ (x) → 0 as A → ∞, and ‖τ̄‖L∞(D) is bounded
uniformly in A.

Remark. If A is much smaller than L (for instance, if A is fixed and L → ∞),
then we expect homogenization to work. Thus, Xt ≈ √

Deff Wt, and so we expect
τ̄ ≈ L2/Deff ≈ L2/

√
A away from ∂Ω, which is exactly the content of (2.2).

Remark. If A is much larger than L (for instance, if A → ∞ and L is fixed), then
we expect X to behave like a diffusion averaged on level sets of H . Since both the
boundary of the big domain Ω and the boundary of every cell are on the same level
set of H , we expect the diffusion X to exit immediately from cell boundaries. This is
exactly (2.3) when X starts on cell boundaries.

As mentioned earlier, equating the expected exit times from the homogenization
and averaging regimes gives a quick heuristic explanation for why the transition occurs
at A ≈ L4. We conclude this section with a very brief description of the ideas behind
the proof of Theorem 2.1.

In the averaging regime (A � L4), the central idea is to use an observation of
Heinze [15], stating that

‖v · ∇τ̄‖2L2(Ω) �
C

A
‖τ̄‖L1 .

Thus the convection forces v · ∇τ̄ to be small, and hence τ̄ cannot vary much along
stream lines. Balancing this with the diffusion, which is responsible for the oscillation
of τ̄ between neighboring cells, one can reduce the estimate for τ̄ to exit time estimate
to a min-max combinatorial question. When A � L4, the convection term dominates,
and a cold boundary propagates inward along cell boundaries, all the way to the center
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cell. The techniques used are similar to those used in [10, 19], and the result itself
(when A � L4) can be deduced from [10].

When A � L4, the estimate is much more delicate. The main idea is to use an
asymptotic expansion, which surprisingly works only in the exceptional situation that
the slow profile is quadratic! We describe this in more detail in section 4.

3. Numerical results in the critical regime. In this section we present our
results for the exit time in the critical regime. We begin with Figure 2, a plot of
τ̄ (L/2, L/2) versus L for values of L ranging from 10 to 80, with A = L4 and the
domain Ω being a square of side length L (left) or a circle of diameter L (right). The
graph was computed using a Monte Carlo simulation using 10,000 realizations. The
numerical method used is based on [28, 29] and is described in section 5.

To see that the mean exit time agrees with that of the homogenized process, we
recall that the asymptotic behavior of the effective diffusion matrix is

Deff = Deff(A)
def
= lim

t→∞
EXt ⊗Xt

t
≈ c0

√
AI,

and we numerically compute c0 ≈ 0.6056. Now, the expected exit time of the ho-
mogenized process

√
Deff W from the center of a circle of diameter L = A1/4 can be

(analytically) computed to be 1/(8c0) ≈ 0.2064, which agrees well with Figure 2(b).
For the square of side length L, a numerical simulation shows that the expected
exit time of

√
Deff W from the center is 0.1473/c0 ≈ 0.2433, which agrees well with

Figure 2(a).
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Fig. 2. Expected exit time of X for different values of L, with A = L4.

We now fix L = 40, A = L4 and consider the exit time τ of the processX from the
center of a square of side length L and a circle of diameter L. We observe that with
small probability, some trajectories of X will travel ballistically along separatrices
and exit the domain very quickly. To study the nonballistic trajectories, we ignore
all trajectories of X that exit the domain in time less than a small time threshold
(roughly 0.03 seconds). For the remaining trajectories, we compare the distribution τ
to τeff, the exit time of the effective Brownian motion

√
DeffW . Our results show that

the distributions are almost identical, and they are illustrated in Figure 3. Specifically,
Figure 3(a) shows the cumulative distribution functions (CDFs) of τ and τeff from a
square of side length 40, and Figure 3(b) shows the CDFs of τ and τeff from a circle
of diameter 40.
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Fig. 3. CDF for τ compared with the CDF of the exit time of the effective Brownian motion.

4. Numerical results in the homogenization regime. A fundamental ques-
tion left unresolved by [16] is about the asymptotic profile of τ̄ in any domain which is
not a disk. This roughly translates to the question of whether “homogenization works”
when the asymptotic profile is not quadratic. We explain the theoretical obstruction
and our numerical findings in this section.

The proof of Theorem 2.1 in the homogenization regime (i.e., A � L4) uses an
asymptotic expansion. To carry this out, we rescale the domain to a square of side
length 1 which we denote by Ω1. Let ε = 1/L, and let σ̄ = σ̄A,ε be the rescaled
function defined by σ̄(x) = ε2τ̄(x/ε). Then, σ̄ satisfies the equation

(4.1)

{
−1

2
Δσ̄ +

A

ε
v
(x
ε

)
· ∇σ̄ = 1 in Ω1

def
= (0, 1)2,

σ̄ = 0 on ∂Ω1.

Now consider a multiscale expansion of an approximate solution σ̃ up to two
terms:

σ̃(x) = σ0(x) + εσ1(x, y) + ε2σ2(x, y), where y =
x

ε
is the “fast” variable.

The usual practice in homogenization [1, 26] is to choose σ0 to be a solution of the
effective problem and then choose σ1, σ2 to be functions which are periodic and mean
zero in the fast variable, and satisfy equations that balance the O(ε) and O(1) terms,
respectively.

While this works perfectly well for A fixed, the proofs in [16] will only work in an
exceptional situation if A → ∞. To elaborate on this, choosing σ1, σ2 as described
above, we will obtain

−1

2
Δσ̃ +

A

ε
v
(x
ε

)
· ∇σ̃ = −Δ

(
σ0 + εσ1 + ε2σ2

)

+ A〈v · ∇xσ1〉 − 2ε∇x · ∇yσ2 + εAv · ∇xσ2,

where 〈·〉 denotes the average with respect to the fast variable. When A is fixed, all
terms with an ε are harmless, and the term A〈v·∇xσ1〉 can be computed explicitly [11,
24]. When we additionally have A → ∞, the presence of the term εAv · ∇xσ2 is
catastrophic! Fortunately this term identically vanishes in the exceptional situation
that σ0 is quadratic. It is this exceptional situation that [16] heavily exploits in the
proof.
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Observe that if one replaces Ω1 with B(0, 1) in (4.1), then σ0 must be quadratic

(explicitly, σ0 = 1
2 tr(Deff(A))(1−|x|2), whereDeff(A) is the effective diffusivity matrix).

In this case, the result in (2.2) can be improved considerably. For convenience, we
state the improved result in rescaled coordinates.

Theorem 4.1 (see [16]). Suppose σ̄′ is the solution to (4.1) on B(0, 1), the disk
of radius 1. Suppose, for some α > 0, A = O(1/ε4−α) as ε → 0. Then there exists
c = c(α) > 0, independent of A, ε, such that for all ε sufficiently small,

(4.2) ‖σ̄ − σ0‖L∞ � c
ε

A1/4
,

where σ0 = σ0(A) is the solution of the effective problem

−∇ ·Deff(A)∇σ0 = 1 in B(0, 1) and σ0 = 0 on ∂B(0, 1).

Observe that Deff(A) = O(
√
A), and hence σ0 = O(1/

√
A) → 0; however, the

right-hand side of (4.2) is ε/A1/4 = o(1/
√
A) by assumption. This means that the

limiting profile of
√
Aσ̄ is exactly

√
Aσ0, which is finite and nonzero in the interior

of B(0, 1). On the other hand, (2.2) provides only upper and lower bounds for the
limiting profile of σ̄.

We numerically confirm that (4.2) is valid in a situation where σ0 is not quadratic.
For this, we return to studying the (rescaled) expected exit time σ̄ on Ω1, the square
of side length 1. Figure 4(a) shows slices of the graphs of σ̄ and σ0 along the diagonal
of the square Ω1. Figure 4(b) shows slices of the graphs of σ̄ and σ0 along a horizontal
line through the center. Figures 4(c) and 4(d) show the same slices on a 1.5 × 2.5
rectangle, instead of the square Ω1. We observe a remarkable agreement between
σ̄ and τ̄0, suggesting that (4.2) is valid for general σ0, despite apparent theoretical
obstacles arising from the catastrophic εAv · ∇xσ2 term.

5. Numerical method. We conclude this paper with a description of the nu-
merical method used for our simulations. As mentioned earlier, the Euler–Maruyama
method is not suitable for our purposes, and the method we use is that in [28]. We
describe the method here and present a simplified analysis of it based on the theory
of modified equations.

We first rescale time by a factor of 1/A and consider the process Yt
def
= Xt/A.

With this change, SDE (1.2) becomes

(5.1) dYt = v(Yt) dt+
1√
A

dW ′
t ,

where W ′
t =

√
AWt/A is a new Brownian motion.

Observe that for large A, the SDE (5.1) is a small random perturbation of the
Hamiltonian system

(5.2)
dY

dt
= v(Y ),

with Hamiltonian H (see (1.3)). So it is natural to look for numerical schemes which
respect features of the underlying deterministic dynamics [14]. The scheme we use is
based on the (deterministic) scheme in [29].

Define di, ei by

(5.3) d1 =

(
−1/2
1/2

)
, d2 =

(
−1/2
−1/2

)
, e1 = 2π

(
1
1

)
, e2 = 2π

(
1
−1

)
,
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Fig. 4. Slices of the graphs of σ̄ and σ0 in a square (top) and rectangle (bottom).
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and observe that

v =

2∑

i=1

vi, where vi(x) = dig(〈ei, x〉), and g(x) = sin(x).

Here 〈·, ·〉 denotes the standard inner product on R2.
The main idea behind the scheme in [29] is that each constituent vector field vi

is divergence-free and can be integrated explicitly. Namely, in view of the identities,

〈di, ei〉 = 〈di, dj〉 = 〈ei, ej〉 = 0 for i, j ∈ {1, 2}, with i �= j,

we see that

(5.4)
Żt(z) = vi(Zt(z)),

Z0(z) = z
⇐⇒ Zt(z) = z + tdig(〈ei, z〉).

In view of (5.4), using the Euler method to integrate each constituent field vi will
give an explicit, volume preserving, numerical integrator for v. Of course, volume
preserving integrators cannot also preserve the Hamiltonian unless they coincide with
the exact flow [4]. However, this numerical method preserves a modified Hamiltonian
(discussed later), preventing it from “spiralling outward,” which is usually the diffi-
culty encountered when the Euler method is used to integrate (5.2) over long time
intervals. In particular, it is possible to show that the application of the Euler method
to an ODE of the form (5.2) results in a drift of the Hamiltonian, the rate of which is
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proportional to the time step Δt, leading in the case of our problem1 to trajectories
spiralling outward, as observed in [28].

In the stochastic setting, we choose a sequence of independent random variables
(ξn) so that each ξn is a two dimensional normally distributed random variable with
mean 0 and covariance matrix I. Let Δt > 0 be the time step, and let y ∈ R2 be
the initial condition. We define Y n, an approximation to the solution of (5.1) at time
nΔt, by

(5.5)

⎧
⎪⎨
⎪⎩

Zn
1 = Y n +Δt d1g(〈Y n, e1〉), Zn

2 = Zn
1 +Δt d2g(〈Zn

1 , e2〉),

Y n+1 = Zn
2 +

(
Δt

A

)1/2

ξn,

with Y 0 = y. It quickly follows from (5.4) that the map y �→ Y n is (surely) volume
preserving for all n. Thus (5.5) gives us a volume preserving numerical scheme for (5.1)
whose inviscid counterpart does not spiral outward!

We remark here on the applicability of our method to more complicated flows.
The original method, proposed in the deterministic setting in [29], deals with source-
free vector fields that are polynomial functions of trigonometric functions of the field
variables. This work was extended in [28] for velocity fields for the type considered in
[29], for equations of the form (1.2), and for the case of inertial particles. Thus as long
as we have a divergent velocity field which can be written as a sum of trigonometric
polynomials we can always apply our method. This, of course, would not be the
case for more general Hamiltonians; however, the philosophy behind the choice of
the numerical method should be the same, namely to use a numerical method that
in the absence of noise is appropriate for the long time integration of Hamiltonian
systems [14].

5.1. An analysis of the method using modified equations. A simple anal-
ysis of the qualitative features of our numerical scheme can be obtained using the
theory of modified equations for SDEs [32, 36]. In particular, assume that (5.1) is
solved by a first order weak method, such as, for example, the stochastic splitting
method (5.5). Then one looks for coefficients u1(x), σ1(x) such that (5.5) approxi-
mates

(5.6) dYt = [u(Yt) + Δtu1(Yt)] dt+

[
1√
A

+Δtσ1(Yt)

]
dWt

weakly to second order. The coefficients u1, σ1 can be calculated following [32] when
the numerical method used is the Euler–Maruyama method. For more complicated
numerical integrators a more general framework is developed in [36].

The underlying idea for calculating these coefficients is that u1, σ1 should be
chosen such that the “modified” local error between the numerical method and the
solution of (5.6) should be one order higher than the “original” local error between
the numerical method and the solution of (5.1). This is accomplished primarily using
weak stochastic Taylor expansions [31]. In our situation, u1 and σ1 can be calculated
using equation (3.9) in [36], which shows that (5.5) approximates

(5.7) dYt = ∇⊥H̃(Yt) dt+
1√
A

(
I − Δt

2
∇v(Yt)

)
dWt

1For a more general discussion see [14].
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weakly to second order. Here v is our velocity field from (1.3), and H̃ is the modified
Hamiltonian defined by

(5.8) H̃ = H(x)

(
1 +

2π2Δt

A

)
+ΔtH1(x),

where

(5.9) H1(x1, x2) =
1

16π2
(cos 4πx2 − cos 4πx1) .

Observe that the modified equation (5.7) is a random perturbation of a two di-
mensional Hamiltonian flow with a cellular Hamiltonian H̃ . It is easy to see that as
long as Δt = o(1), solutions to (5.7) approximate solutions to (5.1). Consequently,
this means that our method will integrate (1.2) on the time interval [0, 1] in roughly A
steps. The Euler–Maruyama method, in contrast, will require roughly A2 steps. Fi-
nally, we remark that when comparing the modified equation (5.7) with that obtained

from the deterministic analysis [14], the only extra term that appears in H̃ is 2π2Δt
A H ,

which accounts for the presence of noise in the problem. We point out here that this
analysis would still be applicable in the case of more complicated two dimensional
flows; however, in this case it greatly simplifies due to the fact that ΔH = −4πH .

6. Conclusions and some open problems. Our first numerical observation
was that in the critical regime, the trajectories of X appear to be divided into two
separate groups: a very small ballistic component, and a large homogenized compo-
nent. A rigorous result proving this effect, or even for the expected behavior, is open.
Further, as our numerics involve the exit time, we directly see that the trajectories of
X are not “stuck” at degenerate critical points of H (the cell corners).

Our second numerical observation suggests that in the homogenization regime
(A � L4), the spatial dependence of the exit time τ̄ converges to that of an effective
Brownian motion. Rigorous analytical results only prove convergence when the do-
main is a disk! In any other domain, only upper and lower bounds are known, but a
rigorous result proving convergence is open.

Finally, from both the numerical and theoretical points of view a very challenging
problem is the one of inertial particles. In this case homogenization results still hold
for periodic velocity fields [27], but nothing is known analytically about the exact
asymptotic behavior of the effective diffusivity in the limit of zero diffusivity. Numer-
ical simulations [28] indicate a highly nonlinear behavior for it in this limit, making
the study of exit time problems similar to that considered here a very challenging
problem.
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