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Remarks on Zero Viscosity Limit for

Nonstationary Navier-Stokes Flows with Boundary

By Tosio Kato

Math Department
University of California

Berkeley, California

1. Introduction

This paper is concerned with the question of convergence of
the nonstationary, incompressible Navier-Stokes flow u = u, to the
Euler flow @ as the viscosity » tends to zero. If the underlying
space domain is all of R™, the convergence has been praved by
several authors under appropriate assumptions on the convergence of
the data (initial condition and external force); see Golovkin [1] and
McGrath [2] for m = 2 and all time, and Swann [3] and the author
f4,5] for m = 3 and short time. The case m 2 4 can be handled in
the same way; in fact, the simple method given in [5] applies to any
dimension. All these results refer to strong solutions (or even
classical solutions, depending on the data) of the Navier-Stokes
equation.

The problem becomes extremely difficult if the space domain
0 ¢ R™ has nonempty boundary 20, due to the appearance of the
boundary layer, and remains open as far as the author is aware. Here
it is necessary, in general, to consider weak solutions u of the
Navier-Stokes equation, since sfrong solutions are known to exist only
for a short time interval that tends to zero as » = 0 (except for
m = 2), while weak solutions are known to exist for all time for any
initial data in LZ(Q), although their unigqueness is not known.

The purpose of this paper is to give some necessary and
sufficient conditions for the convergence to take place. In particular,
we shall show that, roughly speaking, u = @ in LZ{O), uniformly in
t € [0,T], if and only if the epergy dissipation for u during the



interval [0,T] tends to zero. Here [0,T] is an interval on which the
smooth solution @ of the FEuler equation exists, and u is any weak
solution of the Navier-Stokes equation. Such results will give no
vitimate solution to the problem, but they are hoped to be useful for
further investigation of the problem.
2. Statement of Theorems

In what follows 00 is a bounded domain in R™ with smooth
boundary &0. The Navier-Stokes equation for an incompressible fluid

with density one may be written formally

{NS) atu ~ »Au + {u-gradju + grad p = f,
diva=90, Uy3q = 0,

where u = uft,x) is the velocity field, p the pressure, f the external
force, » > 0 the ({(kinematic) viscosity, and at = @g/ot. We assume

{f = f” may depend on »}
2.1 £ e LYo, T:L2(q) for any T > 0.

Here and in what follows LZ(Q] may denote, indiscriminately, the
Lz-space of scalar, vector, or tensor~valued functions and similarly for
other function spaces such as Ck(m, H%(0) (Sobolev spaces}.

A weak solution u to (NS) is assumed to satisfy the following
conditions, where V is the space of wvector-valued Hé(o)—functions
with divergence zero. (We write O = 0/0%;, and (,)} [I 1]
denotes the (formal} inner product [norm] in Lz(ﬂ}.)

22) u € CAOTTLAA) A L2(0T)V) for any T > 0.
t t

2.3)  Iut)r/2 + v J’ lgrad uldt < 1u@ns/2 + j (¢, u)dt.
0 0

. t '
{2.4) (ui{t),@it) ~ (u{0),s(0) = «[0 [(uu,grad @} -
v{grad u,grad @) + {f,@) + (u,atﬁ)] dt .

for every vector-valued test function 3 e 01{[0,003 X ﬁ)
satisfying div @ = 0 and vanishing on 90.

‘Remark 2.1

(a} It is known (see Leray [61, Hopf {71, Ladyzenskaya [8],
Lions [9], Temam '[10]) that a weak solution u exists for any
ul0) € LZ(Q} with div u{0) = 0. We assume that for each » > 0, one
such weak solution u = u, of (NS) has been chosen. For simplicity
the parameter » and the space variable x are suppressed, as is the
time variable t frequently (as in the integrand in (2.4)). '
{b} CW in {2.2) indicates weak continuity.

{c) In {2.4) the following short-hand notation is used:
{2.5) (uu.gr.ad ) = j?k(ujuk,akﬁj) = -E(ukakuj,ﬁj).

{(d) The test function @ in (2.4) is sometimes (as in Hopf [7])
assumed to have spatial compact support. To admit more general &
stated above, we may use the fact that (spatial) test functions with
compact supports are dense in Wé"’(n) with divergence zero, for
any p < *, which can be proved by the "pulling-in" method given by
Heywood [11]. Indeed, the functions uu, grad u, etc., appearing in
{2.4) belong {for each fixed t) to some LY} with q > 1.

{e} (2.3} describes the energy inequality. Note that we do not
require that the energy inequality hold on intervals {tﬁ,t] with
tO > 0, a condition necessary in other problems related to (NS) such
as Leray's structure theorem for turbulent solutions.

The Euler equation is obtained from (NS) by formally setting
vy = 0. In general (m 2 3), only local (in time) solutions are known

for the Euler equation. We denote by ¥ such a solution:

(E) atﬁ+(ﬁ'-grad)ﬁ+gradﬁ=’f_;0$t~<.’i_‘<°°.

divia=0, ‘Tnlaﬂ =0 (normaf component).

Existence and unigqueness of a smooth local solution @ have been
proved by many authors (Ebin-Marsden [12], BourguignonBrezis [13],
Temam [14], Lai [15], Kato [16], Kato-Lai [17], and others).

Thus, we may assume
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We note that T may be taken arbitrarily large if m = 2 and-

a0} € c1*€(q), div o) = o.

We are now able to state the main theorem.

Theorem 1
FixT>0 T<T, and assume

@7 up) -+ a0 in 12(0) as » - 0.
(2.8) jo tf - flidt - 0 as » » G.

Then the following conditiaons (i} to (iv) are
equivalent. {All timiting relations refer to v = 0.

6 ult) » @) ir L2(Q), uniformiy in t € [0,T]
(i) uft) » wit) weakly in Lz(ﬂ) for each t € [0,T].
T
(i) yf ligrad ufZdt - 0.
0
T
2
{iii'Y v llgrad u# dt 0,
‘[O . rcy ”
where I llrcp denctes the LZ(FCP)-norm, F,p €O
being the boundary strip of widith cy, with ¢>0
Ffixed but arbitrary.
1f ia partiicular f=0 these conditions are
equivatent to

(v} wT) - &T) weakly in L3

Theorem idqa -
Replace L1 by Lz in {2.1), and replace (2.8) by

T - ' -
(2.8a) IO 1£-£12d4t » 0 for some T > T, T" < T.

Then the equivalent conditions (i) to (i} in Theorem I
are impltied by

Tl
v} IO Tl - §12dt » 0.

Remark 2.2

{a) Condition (iii} states that the energy dissipation during a
finite time tends to zero as » -+ 0, and ({iii'} states that the
dissipation within a boundary strip of width c» tends to zero.

{b} From the practical point of view, these conditions do not
appear very helpful in deciding whether or not the convergence {i)
takes place. In fact, we do not know whether {iii} or (iii’) is always
true, always false (except in trivial cases), or both possibilities exist.
It may be noted, however, that if the convergence does not take
place, the energy dissipation within the boundary layer of width c»
must remain finite as » » 0. Since the boundary layer is believed to
have thickness proportional to (Jitll/ 2, this suggests that something
violent must have happened for small t > 0.

{c) In Theorems I and Ia, the family (u} with the
continuéus parameter ¥ may be replaced by a ‘sequence cua
corresponding to a seguence ¥ = 0 of the parameter » = ..
3. Proof of Easier Parts of the Theorems

First we deduce simple consequences of the properties of the
solutions u and @  For simplicity we use the notation I IIIp for
the Lp((O,T);Lz(D))__unorm. and {{ , )) for the {formal) scalar product in
Lz((O,T);LZ(Q)). These are used indiscriminately for scalar, vector, and
tensor-valued functions. K denotes various constants independent of
». .

It is well known (and is easy to prove) that (2.3), (2.7) and
{2.8} imply

(3.1} Wi, € lal0}k + Bk € K,

- {32)  » ligrad w3 € Hu(©O12/2 + wudl  NEN, < K.



Similarly, (E) and (2.6) imply

(3.3) (Gd.grad d} = 0,

(3.4) a2z = 1mo)idse + f " .
4]

Now we shall prove simple implications contained in the
theorems.

{a) (i) implies (ii). This is trivial.

{b) (i) implies (iii}. If {ii) is true, (2.3} gives

(3.5) lim sup »ligrad uil3
< Bim sup [((F,u0)} - (Hu(T)12-ruio)yn/2]
< WEay - aEmidonmoy?/z = o

by (2.7), {2.8), (3.1) and (3.4); note that lim inf Fu(T)1 2 H&FT)I
because uw{T}) - GT) weakly. To see that ({f,u)) » ((f,@)), use
dominated convergence in t.

{c} (iii} implies (iii") trivially.

(d) (iv) implies (iii) if f = 0, since only w(T) » ®T) weakly is
needed in the above proof in (b).
£, u)} = 0 by (3.1).

e} {v) implies (iii} under the additional assumptions stated. To
see this, we integrate {2.3) in t € {0,T") to obtain

Indeed, MfMy - © implies

Tl
(3.6) lim sup J’J\U (T'-t)llgrad ull zdt
- T' | |
£ lim sup [Io {T'=t}f,u)dt + (T'Ful) Ilz-llfullli}/ZJ,
where I mz is taken on (0,T'). If {(2.8a) and (v} are true, then

I(T‘-t) [ifw)-E@1dt » 0 and Wull, » Wdli, so that the right member
of .{3.6) does not exceed

3

R

T o
IO (T'-t)f-m@)dt + (T* 1§(0) uz—|||ﬁ|ﬁ§)/z
TN gt 2 . .2
= j [j Eadt + (la@12-1ard)/21dt = 0
0 0

by (3.4). It foliows that the left member of (3.6) is zero. Since
T > T, this implies (iii).
4. Boundary Layers

In the proof of the remaining assertion that (iii’} implies {i}, we
need a "boundary layer” v, which is a correction term {depending on
») to be subtracted from i to satisfy the zero boundary condition and
which has a thin support. It may be note& at this point that v has
no direct relation with the true boundary layer belonging to u. In
fact, the latter is virtually unknown in the mathematical sense.

To construct v, we First introduce a smooth "vector potential”

3, defined on [0,T] x 0, such that
{41) di=divaondn @=0on 00

% is a skew-symmetric tensor of second rank, and div & is a vector
with components X akam. The existence of such an & will be proved
k

in Appendix.
We next introduce a smooth cut-off function rrt o rY
such that
4.2) Ho)=1, tfr)=0forr 2 1,
and set

(4.3) =z = zlx) = t{p/5), where p = dist(x,20),

with a small parameter 5 > 0, which is assumed to tend to zero with »

with a rate to be determined below.



The boundary layer v is defined by
{4.4) v = div(zd) = z div & + &-grad z,

where &-grad z is a vector with components E é"jk'é)kz. Thus, v has a

thin support near 0 and satisfies
(45) v=don O, divv=20in O

{Note that div div b = 0 if b is skew-symmetric.}
The following estimates for v can easily be established.

L]

(4.6) 190 S K Vi € Ks1/2, iavi < K512,

-1

itgrad \rIIL°° € K57, llgrad vil £ Ks_l/z,

lp grad vi_ < K, 1% grad vl o < Ks,

[

lp grad vI £ Kslfz.

Indeed, these estimates are obviously true for v replaced with z,
together with analogous estimates involving second derivatives of =z.
Then (4.6) follows easily because =0 on ©0. & and BtE are
smooth and vanish on 0.
5. Proof of (iii') > (i}

We now assume (ili") and estimate Hu-gi2 using (2.3), {2.7)
and (3.4):

5.1  Nu-al? = qun? + $T12 - 2(u,8) .
< a2 + 2 I (f,a)dt + Ha©)2 + 2 f (FDdt - 200,
0 0

£ _
< ofl) + 2 j'o [ + E@DIdt + 208012 - 2(a,3-v);
where v is defined in the previous section and where o{l}) denotes a

quantity that tends to zero as » - 0 uniformly in t € [0,T]. Note
that vl € K512 by (46) and § - O with » and that lul

¢ K by (3.1). We have introduced the boundary layer v into the last
term of (5.1) in order to facilitate the following estimates.

To estimate the last term on the right of (5.1}, we use @ = 0
_ v as a test function in (2.4); this is allowed since & - v is smooth

with div(i—v) = 0 and vanishes on ©0. The resuit is, when muitiplied

with -2,
2 t -
5.2)  -20u,d-v) + 21u0}1 = o(1) + I , [-2fougrad(iv)
+ 2v (grad ugrad(i-v)) - 2068 - 2(u,d,E-v)1dt:

note that Iw(0)—d7{0)1 - 0 and lvit}l - 0.
The last term in the integrand in (5.2) is estimated as

5:3)  -20u,@,0-v)) = -2(u,3,@ + ofl)
= of) + 2(u,{d-grad}d) - 2(u,f)

(see (3.1), (4.6) and (E).} It follows from (5.1} te {5.3) that
t -
5.4  lu-id2 € of) + 2 f , L-Eu-d - (uu, grad(@-v))

+ (u,(ﬁ-grad)ﬁt) + » {grad u,grad{@-v))] dt
< ofl) + 2 jo [f-Fu-8) - ((u-D(u-T),zrad B

+ {uu,grad v) + » (grad u,grad(@-v)] dt,
where we have used the equality
i5.5) (uugrad @ - {u,(d-gradld} = ((o-GHu-a)}grad @),

. = 1 _
which follows easily from divu = div @ = 0, u € Hyla), T, 190
= 0.

aOn



In view of the simple inequalities

t-fo-m € IE-FI pu-T8 < KIE-FH,
(fu~a){u~a),grad @) € Kllu~@d II2,

we obtain from (5.4) the following integral inequality:

2

2 t
(5.6) llu-dl® < of1) + jo [Klu-al2 + Rt)}dt,

where
(5.7} R{t) = {uu,grad v) + v {grad u,grad{d-v}} + KIf-f&.

The integral inequality (5.6} for Hu-~d II2 is of a familiar
type. It will lead to the desired result IIu-ﬁﬂ2 = o(1) if we can
show that

t
(5.8) IO R(t) dt < o(1).

To prove (5.8}, we first note that

I{uu,grad v)1 € Hp-l o

ul 2 1 p%grad vil_,, < Kslgrad ull}
& 5
by (4.6) and the well-known inequality of Hardy-Littlewood (note that
u € Hé(ﬂ)}; we can take # p"lullr only on the boundary strip
5
T because v is supported on T 5 Similarly,
) vigrad u,grad(G-vi}i
€ » llgrad ull #grad Gl + » lgrad ulir. Ilgrad vIII.
8 5

-1/2

€ Ky ligrad ull + Kys ilgrad u!rr

5

by {4.6).

If we simply set 8 = c», we thus obtain

A}

Rit) € Ky llgrad ulirz. + K» fligrad ull + Kpl/z fgrad ullp
cy 3]

+ K If-fIl.
From this (5.8} follows by (iii') and (2.8), since

t
IO » lgrad ulldt € t¥2 » ligrad ult = 0(»1'?)

by (3.2).
Appendix
Construction of the Vector Potential
Lemma Al

Let u be @ smooth tangential vertor field on a

"smooth closed surface TI' {n R™ There exists ¢

skew-symmetric tensor field a of second rank on R®
such that a=0 aad diva=u on I (akajk = in tensor
notation). 1f u depends on a parameter t smoothly, a
can be chosen similarly.

Proof

~ If T is the plene x; =0, u = ulx) is defined for x
= (KgpoXpy) with ugy = 0. If we set aj; = -ay; = xqu4x’}, ag9 = 0,
and age = 0 for §, k 2 2, a satisfies the required conditions.

In the general case, the problem is locally reduced to the
special case Jjust considered by a coordinate transformation with
Jacobian determinant 1. Then we may identify u and a with an {(m-1}
form and an {m-2) form, respectively, so that div.a = u has an
invariant meaning da = u. Thus, we can construct an a with the

required properties in a neighborhood of each point of T.



Next we .construct a in a neighborhood of I'. To this end we
use a partition of unity (2%3 in a neighborhood of T' such that on
the support of each ©5 a local solution a® can be constructed as
above. Setting a = Eﬁsa_s then gives the desired a. Indeed, it is

obvious that a =0 on I, and div a = Z[2%div a° + {grad &5)a°%]
a8

=% = uon .
a8

Finally, we extend &8 = a, thus obtained to all of RM. It
suffices to intreduce a smooth cui-off function t and set a = fap.
Here ¢ should be equal to 1 in a neighborhood of I and have

support contained in the domain of ag.

Coroliary
u cen be extended to @ vector field on R™ with
divu = O and Uor = 0.

Proof

It suffices to set u = div a {nqt_e_thaf div div a = 0}.
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Free Boundary Problems in Mechanics
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Abstract

Free boundary problems are defined and illustrated by several
problems in mechanics, First the problem of finding the free surface
of a liquid in hydrostatic equilibrium is considered. Then the effect
of surface temsion is taken into account. Finally, the contact of an
inflated membrane, such as a balloon or tire, with a solid surface is
formulated. This problem is solved by the method of matched

asymptotic expansions when the contact area is small.
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