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Popa’s Cocycle Superrigidity Theorem

In this lecture, we shall sketch the proof of:

Theorem (Popa)
Let Γ be a countably infinite Kazhdan group and let G be a countable
group such that Γ E G. If H is any countable group, then every Borel
cocycle

α : G × 2G → H

is equivalent to a group homomorphism of G into H.

Remark
Popa’s original proof was written in the framework of Operator
Algebras.
This presentation is based upon Furman’s Ergodic-theoretic
account.
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The plan of the talk

Remark
More accurately, we shall prove Popa’s Theorem for the shift
action of G on ([0,1]G, ν), where ν is the usual product probability
measure.
It is then fairly straightforward to deduce the corresponding result
for the quotient G-space (2G, µ).

The four steps of the proof
Extending homomorphisms
Popa’s criterion for untwisting cocycles
Malleability of the action
Local rigidity of cocycles
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Extending homomorphisms

Theorem
Suppose that the action of the countable group G on the standard
probability space (X , µ) is strongly mixing.
Let H be any countable group and let α : G × X → H be a Borel
cocycle.
Suppose that there exists an infinite normal subgroup Γ E G
such that α � Γ× X = ϕ is a group homomorphism.

Then α is a group homomorphism.

Remark
Thus we can focus our attention on the strongly mixing action of the
Kazhdan group Γ on ([0,1]G, ν).
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Exploiting the identity α(gh, x) = α(g, h · x)α(h, x)

Fix some g ∈ G and define θ : X → H by θ(x) = α(g, x).

We must show that θ is µ-a.e. constant.

Let γ ∈ Γ and let γ′ = gγg−1 ∈ Γ.

Then for µ-a.e. x ∈ X :

θ(γ · x) = α(g, γ · x)

= α(gγ, x)α(γ, x)−1

= α(γ′g, x)ϕ(γ)−1

= α(γ′,g · x)α(g, x)ϕ(γ)−1

= ϕ(gγg−1) θ(x)ϕ(γ)−1.
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Regarding θ as a Borel homomorphism

Consider the action of Γ on H defined by

γ ∗ h = ϕ(gγg−1) hϕ(γ)−1.

Then for all γ ∈ Γ,

γ ∗ θ(x) = θ(γ · x) µ-a.e. x ∈ X .

Choose some a ∈ H such that Y = {x ∈ X | θ(x) = a} has
positive µ-measure; and let

Γa = {γ ∈ Γ | γ ∗ a = a}.
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The punchline

Claim
Γa is an infinite subgroup of Γ.

Since the action of G on (X , µ) is strongly mixing, it follows that
Γa acts ergodically on (X , µ).

Clearly Y = {x ∈ X | θ(x) = a} is Γa-invariant.

Since µ(Y ) > 0, it follows that µ(Y ) = 1 and hence θ is µ-a.e.
constant, as desired.
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Proof of Claim

If γ ∈ Γ r Γa and x ∈ Y , then

θ(γ · x) = γ ∗ θ(x) = γ ∗ a 6= a

and hence γ · x /∈ Y . Thus γ(Y ) ∩ Y = ∅.

Hence if {γi | i ∈ I} are coset representatives of Γa in Γ, then:
{γi(Y ) | i ∈ I} are pairwise disjoint.
µ(γi(Y )) = µ(Y ) > 0 for all i ∈ I.

Thus [Γ : Γa] <∞ and so Γa is infinite, as desired.
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More generally

Arguing inductively, the theorem holds if there exists a smooth chain
of subgroups

Γ = G0 6 G1 6 · · · 6 Gβ 6 · · · 6 Gα = G,

such that Gβ E Gβ+1 for all β < α.

Or even: Gβ+1 is generated by elements g such that

|gGβg−1 ∩Gβ| = ∞.

Example
The theorem holds when Γ = SLn(Z) and G = GLn(Q).
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Popa’s criterion for untwisting cocycles

Theorem
Suppose that the action of the countable group Γ on the standard
probability space (X , µ) is strongly mixing.
Let H be any countable group and let α : Γ× X → H be a Borel
cocycle.
Consider the diagonal action of Γ on (X × X , µ× µ) and let
α1, α2 : Γ× (X × X ) → H be the cocycles defined by

α1(γ, (x1, x2)) = α(γ, x1) and α2(γ, (x1, x2)) = α(γ, x2).

Then α is equivalent to a group homomorphism if and only if
α1 is equivalent to α2.

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



The trivial direction

Suppose that α : Γ× X → H is equivalent to the group
homomorphism ϕ : Γ → H.
Then there exists a Borel map b : X → H such that

ϕ(γ) = b(γ · x)α(γ, x)b(x)−1 µ-a.e. x

Hence for (µ× µ)-a.e. (x1, x2)

b(γ · x1)α(γ, x1)b(x1)
−1 = b(γ · x2)α(γ, x2)b(x2)

−1

and so the Borel map B : X × X → H defined by

B(x1, x2) = b(x1)
−1b(x2)

witnesses that α1 is equivalent to α2.
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The nontrivial direction

Suppose that there exists a Borel map B : X × X → H such that
for (µ× µ)-a.e. (x1, x2)

B(γ · x1, γ · x2)α(γ, x2)B(x1, x2)
−1 = α(γ, x1).

Then with some work, it turns out that there are Borel maps
ψ, θ : X → H such that for (µ× µ)-a.e. (x1, x2)

B(x1, x2) = ψ(x1)θ(x2)

and so

θ(γ · x2)α(γ, x2)θ(x2)
−1 = ψ(γ · x1)

−1α(γ, x1)ψ(x1).

Fixing γ ∈ Γ, it follows that the left and right sides of the above
equation are µ-a.e. constant, say ϕ(γ). And this implies that α is
equivalent to the group homomorphism ϕ : Γ → H.
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Some work ...

For (µ× µ× µ)-a.e. (x1, x2, x3),

α(γ, x1) = B(γ · x1, γ · x2)α(γ, x2)B(x1, x2)
−1

α(γ, x3) = B(γ · x3, γ · x2)α(γ, x2)B(x3, x2)
−1.

Hence substituting the first identity into the second,

α(γ, x3) = B(γ·x3, γ·x2)B(γ·x1, γ·x2)
−1α(γ, x1)B(x1, x2)B(x3, x2)

−1.
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Some work ...

Setting Φ(x1, x2, x3) = B(x1, x2)B(x3, x2)
−1, we obtain

Φ(γ · x1, γ · x2, γ · x3) = α(γ, x1)Φ(x1, x2, x3)α(γ, x3)
−1.

We will prove that for (µ× µ× µ)-a.e. (x1, x2, x3),

Φ(x1, x2, x3) = f (x1, x3).

Substituting a random element a ∈ X for x3, we obtain that for
(µ× µ)-a.e. (x1, x2),

B(x1, x2)B(a, x2)
−1 = f (x1,a)

and hence

B(x1, x2) = f (x1,a)B(a, x2) = ψ(x1)θ(x2).
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Some work ...

By strong mixing, Γ acts ergodically on

Z = {〈(x1, x2, x3), (y1, y2, y3)〉 | x1 = y1, x3 = y3} ∼= X 4.

Letting δ be the Kronecker delta function, for a.e. 〈x̄ , ȳ〉 ∈ Z ,

δ(Φ(γ · x̄),Φ(γ · ȳ))

= δ(α(γ, x1)Φ(x̄)α(γ, x3)
−1, α(γ, x1)Φ(ȳ)α(γ, x3)

−1)

= δ(Φ(x̄),Φ(ȳ)).

By ergodicity and the countability of H, we must have that

Φ(x̄) = Φ(ȳ) for a.e. 〈x̄ , ȳ〉 ∈ Z .
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A malleable action

Let Γ be a countably infinite group and let G be any countable
group such that Γ 6 G.
Consider the diagonal action of Γ on ([0,1]G × [0,1]G, ν × ν).
Let H be any countable group and let Z 1 be the space of all
Borel cocycles

α : Γ× ([0,1]G × [0,1]G) → H

identified modulo (ν × ν)-null sets, equipped with the topology
of convergence in measure.
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A malleable action

In other words, for each F ∈ [Γ]<ω, α ∈ Z 1 and ε > 0, there is a
corresponding basic open subset VF ,α,ε consisting of the cocycles
β ∈ Z 1 such that for all γ ∈ F ,

(ν × ν)({x̄ ∈ [0,1]G × [0,1]G | α(γ, x̄) = β(γ, x̄)}) > 1− ε.

Theorem
If β ∈ Z 1 is any cocycle, then there exists a continuous map t 7→ βt ,
t ∈ [0,1] such that

β0(x1, x2) = β(x1, x2) and β1(x1, x2) = β(x2, x1).
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A continuous transformation

For each t ∈ [0,1], define Tt ∈ Aut([0,1]× [0,1],m ×m) by

Tt(x , y) =

{
(x , y) if x , y ∈ [0,1− t ]
(y , x) otherwise

and let ∆t ∈ Aut([0,1]G × [0,1]G, µ× µ) be the corresponding
“diagonal automorphism”.
Then for all (x1, x2), we have that ∆0(x1, x2) = (x1, x2) and
∆1(x1, x2) = (x2, x1).
Furthermore, each ∆t commutes with the diagonal action of Γ on
[0,1]G × [0,1]G.
Hence if β : Γ× ([0,1]G × [0,1]G) → H is any Borel cocycle,
then

βt(g, (x1, x2)) = β(g,∆t(x1, x2))

is also a cocycle.

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



Local Rigidity of Cocyles

Theorem
Let Γ be a countably infinite Kazhdan group with finite generating
set S and let X be a standard Borel Γ-space with invariant ergodic
probability measure µ.
Let H be any countable group.

Then there exists ε > 0 such that if α, β : Γ× X → H are Borel
cocycles with

µ({x ∈ X | α(γ, x) = β(γ, x)}) > 1− ε for all γ ∈ S,

then α and β are equivalent.

Remark
Since the shift action of Γ on ([0,1]G, ν) is strongly mixing, it follows
that the diagonal action of Γ on ([0,1]G × [0,1]G, ν × ν) is ergodic.
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An associated unitary representation

Let ε > 0 be sufficiently small.
Define a Borel action of Γ on the infinite measure space

(X̃ , µ̃) = (X × H, µ×mH),

where mH is the counting measure, by

γ · (x ,h) = (γ · x , α(γ, x) h β(γ, x)−1 ).

Consider the induced unitary action π on the Hilbert space
H = L2(X̃ , µ̃), defined by

(π(γ) · F )(x ,h) = F (γ−1 · (x ,h)).
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An invariant vector

Let F0 ∈ H be the characteristic function of the set
X × {1H} ⊆ X × H.
Then F0 is a unit vector such that for all γ ∈ S,

〈π(γ) · F0,F0〉 = µ({x ∈ X | α(γ, x) = β(γ, x)}) > 1− ε.

Since Γ is a Kazhdan group and ε is sufficiently small, there exists
a Γ-invariant unit vector F : X × H → C such that
||F0 − F || < 1/10.
By Fubini, the function Fx : H → [0,∞), defined by
Fx(h) = |F (x ,h)|2, is summable for µ-a.e. x ∈ X .
Furthermore, if γ ∈ Γ, then for µ-a.e. x ∈ X ,

{Fγ·x(h) | h ∈ H} = {Fx(h) | h ∈ H}.
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The punchline

By the ergodicity of the action of Γ on (X , µ), there exist constants
w , p, k such that for µ-a.e. x ∈ X , w =

∑
h∈H Fx(h) = 1,

p = max{Fx(h) | h ∈ H} and k = |{h ∈ H | Fx(h) = p}|.
Clearly p ≤ 1/k and so Fx(1H) = |F (x ,1H)|2 ≤ 1/k .
Thus 1− 1/

√
k ≤ ||F − F0|| < 1/10 and so k = 1.

Hence we can define a Borel function ϕ : X → H such that
Fx(ϕ(x)) = p for µ-a.e. x ∈ X .
Since F is Γ-invariant and

γ · (x ,h) = (γ · x , α(γ, x) h β(γ, x)−1 ),

we must have that

ϕ(γ · x) = α(γ, x)ϕ(x)β(γ, x)−1 µ-a.e. x ∈ X .
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