Countable Borel Equivalence Relations IV

Simon Thomas

Rutgers University

17th November 2007

うく (? + 日 + + 三 +

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

17th November 2007

An application of Ioana Superrigidity

The Kechris Conjecture

 \equiv_T is universal.

Observation

There exists a universal countable Borel equivalence relation E on $\mathcal{P}(\mathbb{N})$ such that $E \subseteq \equiv_T$.

Proof.

Identifying the free group \mathbb{F}_2 with a suitably chosen group of recursive permutations of \mathbb{N} , we have that $E_{\infty} \subseteq \equiv_{\mathcal{T}}$.

Simon Thomas (Rutgers University)

∽ ৭ ়ে ৰ @ ► ৰ ≣ ► 17th November 2007

Conjecture (Hjorth)

If F is a universal countable Borel equivalence relation on the standard Borel space X and E is a countable Borel equivalence relation such that $F \subseteq E$, then E is also universal.

Theorem (Thomas 2002)

There exists a pair of countable Borel equivalence relations $F \subseteq E$ on a standard Borel space X such that $E <_B F$.

うへで・< 目)

The ring of *p*-adic integers

• The ring \mathbb{Z}_p of *p*-adic integers is the inverse limit of the system

$$\cdots \xrightarrow{\varphi_{n+1}} \mathbb{Z}/p^{n+1}\mathbb{Z} \xrightarrow{\varphi_n} \mathbb{Z}/p^n\mathbb{Z} \xrightarrow{\varphi_{n-1}} \cdots \xrightarrow{\varphi_1} \mathbb{Z}/p\mathbb{Z}.$$

• So we can express each $z \in \mathbb{Z}_p$ as a formal sum

$$z = a_0 + a_1p + a_2p^2 + \cdots + a_np^n + \cdots$$

where each $0 \le a_n < p$.

• The *p*-adic norm is given by

$$|z|_{\rho} = \rho^{-\operatorname{ord}_{\rho}(z)}, \quad \operatorname{ord}_{\rho}(z) = \min\{n \mid a_n \neq 0\};$$

and the *p*-adic metric is given by

$$d_{\rho}(x,y)=|x-y|_{\rho}.$$

Simon Thomas (Rutgers University)

Theorem

- \mathbb{Z}_p is a compact complete separable metric space.
- \mathbb{Z} is a dense subring of \mathbb{Z}_p .

Corollary

- $SL_n(\mathbb{Z}_p)$ is a compact Polish group.
- $SL_n(\mathbb{Z})$ is a dense subgroup of $SL_n(\mathbb{Z}_p)$.

Note that $SL_n(\mathbb{Z}_p)$ is the inverse limit of the system

$$\cdots \xrightarrow{\theta_{n+1}} SL_n(\mathbb{Z}/p^{n+1}\mathbb{Z}) \xrightarrow{\theta_n} SL_n(\mathbb{Z}/p^n\mathbb{Z}) \xrightarrow{\theta_{n-1}} \cdots \xrightarrow{\theta_1} SL_n(\mathbb{Z}/p\mathbb{Z}).$$

Theorem

Since $SL_n(\mathbb{Z}_p)$ is a compact group, there exists a unique Haar probability measure on $SL_n(\mathbb{Z}_p)$; i.e. a probability measure μ_p which is invariant under the left translation action.

In fact, μ_p is simply the inverse limit of the counting measures on

$$\cdots \xrightarrow{\theta_{n+1}} SL_n(\mathbb{Z}/p^{n+1}\mathbb{Z}) \xrightarrow{\theta_n} SL_n(\mathbb{Z}/p^n\mathbb{Z}) \xrightarrow{\theta_{n-1}} \cdots \xrightarrow{\theta_1} SL_n(\mathbb{Z}/p\mathbb{Z}).$$

Observation

If $H \leq SL_n(\mathbb{Z}_p)$ is an open subgroup, then H has finite index and

$$\mu_{\mathcal{P}}(H) = \frac{1}{[SL_n(\mathbb{Z}_{\mathcal{P}}):H]}$$

Simon Thomas (Rutgers University)

The *p*-adic probability measure

Theorem

 μ_p is the unique $SL_n(\mathbb{Z})$ -invariant probability measure on $SL_n(\mathbb{Z}_p)$.

Proof.

- SL_n(ℤ_p) acts continuously on the space M of probability measures on SL_n(ℤ_p).
- Hence if ν is any probability measure on $SL_n(\mathbb{Z}_p)$, then

 $S_{\nu} = \{ g \in SL_n(\mathbb{Z}_p) \mid \nu \text{ is } g \text{-invariant } \}$

is a closed subgroup of $SL_n(\mathbb{Z}_p)$.

 Thus, by density, any SL_n(Z)-invariant probability measure is actually SL_n(Z_p)-invariant and hence must be μ_p.

Unique ergodicity

Definition

The action of G on the standard probability space (X, μ) is uniquely ergodic iff μ is the unique G-invariant probability measure on X.

Observation

If the action of G on (X, μ) is uniquely ergodic, then G acts ergodically.

Proof.

- Suppose that there exists a *G*-invariant Borel subset A ⊆ X with 0 < μ(A) < 1. Let B = X \ A.
- Then we can define distinct G-invariant probability measures by

$$\nu_1(Z) = \mu(Z \cap A)/\mu(A)$$
$$\nu_2(Z) = \mu(Z \cap B)/\mu(B).$$

Ergodic Components

Observation

The action of $SL_n(\mathbb{Z})$ on $SL_n(\mathbb{Z}_p)$ is not strongly mixing.

• Let $\Lambda = \ker \varphi$ and $H = \ker \psi$ be the kernels of the maps

$$arphi: \mathit{SL}_n(\mathbb{Z})
ightarrow \mathit{SL}_n(\mathbb{Z}/p\mathbb{Z})$$

and

$$\psi: SL_n(\mathbb{Z}_p) \to SL_n(\mathbb{Z}_p/p\mathbb{Z}_p) \cong SL_n(\mathbb{Z}/p\mathbb{Z}).$$

• Then *H* is the closure of Λ and the ergodic decomposition of the Λ-action is given by

$$SL_n(\mathbb{Z}_p) = Hg_1 \sqcup \cdots \sqcup Hg_d, \qquad d = |SL_n(\mathbb{Z}/p\mathbb{Z})|.$$

• The Hg_i are the ergodic components of the Λ-action.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

Definition

Let $F \subseteq E$ be the orbit equivalence relations of the actions of Λ and $SL_n(\mathbb{Z})$ on $SL_n(\mathbb{Z}_p)$.

Theorem (Thomas 2002)

If $n \ge 3$, then $E <_B F$.

By considering the ergodic decomposition of the A-action

$$SL_n(\mathbb{Z}_p) = Hg_1 \sqcup \cdots \sqcup Hg_d, \qquad d = |SL_n(\mathbb{Z}/p\mathbb{Z})|,$$

we see that

$$F = E_1 \oplus \cdots \oplus E_d$$
, where $E_i = F \upharpoonright Hg_i$.

- First we claim that the inclusion map Hg_i → SL_n(ℤ_p) is a Borel reduction from E_i to E.
- So suppose that $x, y \in Hg_i$ and that $x \in y$.
- Then there exists $\gamma \in SL_n(\mathbb{Z})$ such that $\gamma x = y$.
- It follows that

$$\emptyset \neq \gamma Hg_i \cap Hg_i = H\gamma g_i \cap Hg_i.$$

• Hence $\gamma \in SL_n(\mathbb{Z}) \cap H = \Lambda$ and so $x E_i y$.

- In order to show that E ≤_B E_i, we choose our coset representatives g_k so that each g_k ∈ SL_n(ℤ).
- For each $1 \le k \le d$, define $h_k : Hg_k \to Hg_i$ by $h_k(x) = g_i g_k^{-1} x$.
- We claim that $h = h_1 \cup \cdots \cup h_d$ is a Borel reduction from *E* to *E_i*.
- If $x, y \in SL_n(\mathbb{Z}_p)$, then

$$x E y$$
 iff $h(x) E h(y)$
iff $h(x) E_i h(y)$.

• The last equivalence follows because h(x), $h(y) \in Hg_i$.

Lemma

If $F \subseteq E$ are the orbit equivalence relations of the actions of Λ and $SL_n(\mathbb{Z})$ on $SL_n(\mathbb{Z}_p)$, then

$$F \sim_B \underbrace{E \oplus \cdots \oplus E}_{d \text{ times}}.$$

Hence it is enough to prove ...

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ < ເ < 4 🗗 ► 4 🗐 17th November 2007

Some Notation

- $(K, \mu) = (SL_n(\mathbb{Z}_p), \mu_p).$
- $\Gamma = SL_n(\mathbb{Z}).$
- *E* is the orbit equivalence relation of Γ on *K*.

Then it's enough to prove ...

Theorem

If $f: K \to K$ is a Borel reduction from E to E, then

$$\mu(\Gamma \cdot f[K]) = 1.$$

Simon Thomas (Rutgers University)

∽ < <
 <

The proof begins

- Suppose that $f: K \to K$ is a Borel reduction from *E* to *E*.
- Then we can define a Borel cocycle $\alpha : \Gamma \times K \to \Gamma$ by

 $\alpha(g, x) =$ the unique $h \in H$ such that $h \cdot f(x) = f(g \cdot x)$.

• By Ioana Superrigidity, there exists

- a subgroup $\Delta \leqslant \Gamma$ of finite index
- an ergodic component $X \subseteq K$ for the Δ -action

such that $\alpha \upharpoonright (\Delta \times X)$ is equivalent to a group homomorphism

$$\psi: \Delta \to SL_n(\mathbb{Z}).$$

• After slightly adjusting *f*, we can suppose that $\alpha \upharpoonright (\Delta \times X) = \psi$.

An application of Margulis Superrigidity

• To simplify the presentation, suppose that $n \ge 3$ is odd.

Theorem

Suppose that $\Delta \leqslant SL_n(\mathbb{Z})$ is a subgroup of finite index and that

$$\psi: \Delta \to SL_n(\mathbb{Z})$$

is a group homomorphism. Then either:

- ψ[Δ] is finite; or
- ψ is an embedding and ψ[Δ] is a subgroup of finite index in SL_n(ℤ).

- Suppose that $\psi[\Delta]$ is finite.
- Recall that $\psi(g) \cdot f(x) = f(g \cdot x)$ for all $g \in \Delta$ and $x \in X$.
- Thus we can define a Δ -invariant map $\Phi: X \to [K]^{<\omega}$ by

$$\Phi(x) = \{ f(g \cdot x) \mid g \in \Delta \}.$$

 Since Δ acts ergodically on X, it follows that Φ is constant on a μ-conull subset of X, which is a contradiction.

Case 2

- Suppose that ψ is an embedding and that ψ[Δ] is a subgroup of finite index in SL_n(Z).
- Let Y_1, \dots, Y_d be the ergodic components for the action of $\psi[\Delta]$ on *K*.
- Since ∆ acts ergodically on X, we can suppose that there exists Y = Y_i such that f : X → Y.
- Since ψ(g) · f(x) = f(g · x), we can define a ψ[Δ]-invariant probability measure ν on Y by

$$\nu(Z) = \mu(f^{-1}(Z))/\mu(X).$$

• Since the action of $\psi[\Delta]$ on *Y* is uniquely ergodic,

$$\nu(\boldsymbol{Z}) = \mu(\boldsymbol{Z})/\mu(\boldsymbol{Y}).$$

• Hence $\mu(f[X]) = \mu(Y) > 0$ and so $\mu(\Gamma \cdot f[K]) = 1$.

Theorem (loana)

- Let Γ be a countably infinite Kazhdan group and let (X, μ) be a free ergodic profinite Γ-space.
- Suppose that H is any countable group and that α : Γ × X → H is a Borel cocycle.
- Then there exists a subgroup Δ ≤ Γ of finite index and an ergodic component Y ⊆ X for the Δ-action such that α ↾ (Δ × Y) is equivalent to a homomorphism ψ : Δ → H.

Profinite Actions

Definition

- Let Γ be a countable group.
- For each $n \in \mathbb{N}$, let (X_n, μ_n) be a finite Γ -space, where $\mu_n(Y) = |Y|/|X_n|$.
- Suppose that each (X_n, μ_n) is a quotient of (X_{n+1}, μ_{n+1}) ; say,

$$\cdots \xrightarrow{q_{n+1}} (X_{n+1}, \mu_{n+1}) \xrightarrow{q_n} (X_n, \mu_n) \xrightarrow{q_{n-1}} \cdots \xrightarrow{q_0} (X_0, \mu_0).$$

Then the canonical action of Γ on

$$(X,\mu) = \lim_{\leftarrow} (X_n,\mu_n)$$

is said to be a profinite action.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ ৭ ে ৰ 🗗 ৮ ৰ 🗐 17th November 2007

Examples of Profinite Actions

Definition

 A countably infinite group
 Γ is residually finite iff there exists a chain of finite index normal subgroups

$$\Gamma_0 > \Gamma_1 > \cdots > \Gamma_n > \cdots$$

such that $\bigcap \Gamma_n = 1$.

• Then Γ is a dense subgroup of the profinite group $\lim \Gamma/\Gamma_n$.

Example

Let *K* be a profinite group and let Γ be a countable dense subgroup. If *L* is a closed subgroup of *K*, then the action of Γ on *K*/*L* is profinite.

Example

The action of $SL_n(\mathbb{Z})$ on the projective space $PG(n-1, \mathbb{Q}_p)$ is profinite.

Simon Thomas (Rutgers University)

A final application of Ioana Superrigidity

Definition

Fix some $n \ge 3$. Let S be a nonempty set of primes and regard $SL_n(\mathbb{Z})$ as a subgroup of

$$G(S) = \prod_{p \in S} SL_n(\mathbb{Z}_p)$$

via the diagonal embedding. Let E_S be the corresponding orbit equivalence relation.

Theorem (Thomas 2002)

If $S \neq T$, then E_S and E_T are incomparable with respect to Borel bireducibility.

Simon Thomas (Rutgers University)

∽ < <
 <

- For simplicity, suppose that S = { p } and T = { q }, where p ≠ q are distinct primes.
- Suppose that f : SL_n(ℤ_p) → SL_n(ℤ_q) is a Borel reduction from E_{{p}} to E_{{q}}.
- Then arguing as above, after passing to subgroups of finite index and ergodic components if necessary, we find that

$$(SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p) \cong (SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_q), \mu_q)$$

as measure-preserving permutation groups.

Basic Problem

How can we recognize the prime p in ($SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p$)?

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ < <
 <

The Automorphism Group

Definition

Aut(SL_n(ℤ), SL_n(ℤ_p), μ_p) consists of the measure-preserving bijections φ : SL_n(ℤ_p) → SL_n(ℤ_p) such that for all γ ∈ SL_n(ℤ),

$$\varphi(\gamma \cdot \mathbf{x}) = \gamma \cdot \varphi(\mathbf{x})$$
 for μ_p -a.e. \mathbf{x} .

As usual, we identify two such maps if they agree μ_p-a.e.

Example

For each $g \in SL_n(\mathbb{Z}_p)$, we can define a corresponding automorphism by $\varphi(x) = x g$.

Proposition (Gefter-Golodets 1988)

Aut($SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p$) = $SL_n(\mathbb{Z}_p)$.

Simon Thomas (Rutgers University)

∽ ৭ ে ৰ 🗇 ৮ ৰ 🖹 । 17th November 2007

Proof of Gefter-Golodets

- Suppose that $\varphi \in Aut(SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p)$.
- For each $x \in SL_n(\mathbb{Z}_p)$, let $h(x) \in SL_n(\mathbb{Z}_p)$ be such that

$$\varphi(\mathbf{x}) = \mathbf{x} h(\mathbf{x}).$$

• If $\gamma \in SL_n(\mathbb{Z})$, then

$$\varphi(\gamma \cdot \mathbf{x}) = \gamma \cdot \varphi(\mathbf{x}) = \gamma \cdot \mathbf{x} h(\mathbf{x})$$

and so $h(\gamma \cdot x) = h(x)$.

Since SL_n(ℤ) acts ergodically on (SL_n(ℤ_p), μ_p), there exists g ∈ SL_n(ℤ_p) such that

$$h(x) = g$$
 for μ_p -a.e. x .

Basic Question

How do we recognize the prime p in the topological group $SL_n(\mathbb{Z}_p)$?

Theorem (Folklore)

- $SL_n(\mathbb{Z}_p)$ is "virtually" a pro-p group.
- More precisely, if H is any open subgroup, then

$$[SL_n(\mathbb{Z}_p):H] = b p^{\ell}$$

for some $\ell \geq 0$ and some divisor b of $|SL_n(\mathbb{Z}/p\mathbb{Z})|$.

Simon Thomas (Rutgers University)

∽ < <
 <

Finally I will mention some long outstanding open problems concerning:

- Hyperfinite relations
- Treeable relations
- Universal relations

Theorem (Dougherty-Jackson-Kechris)

If *E* is a countable Borel equivalence relation on a standard Borel space *X*, then the following are equivalent:

- (a) $E \leq_B E_0$.
- (b) E is hyperfinite; i.e. there exists an increasing sequence

 $F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq \cdots$

of finite Borel equivalence relations on X such that $E = \bigcup_{n \in \mathbb{N}} F_n$. (c) There exists a Borel action of \mathbb{Z} on X such that $E = E_{\mathbb{T}}^X$.

Simon Thomas (Rutgers University)

∽ < <
 <

Theorem (Jackson-Kechris-Louveau)

If G is a countable nonamenable group, then E_G is not hyperfinite.

Remark

Recall that E_G is the orbit equivalence relation arising from the free action of G on ((2)^G, μ).

Question (Weiss)

Suppose that G is a countable amenable group and that X is a standard Borel G-space. Does it follow that E_G^X is hyperfinite?

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ ৭ ়ে ৰ @ ► ৰ ≣ ► 17th November 2007

Theorem (Connes-Feldman-Weiss)

Suppose that G is a countable amenable group and that X is a standard Borel G-space. If μ is any Borel probability measure on X, then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is hyperfinite.

Theorem (Gao-Jackson)

If G is a countable abelian group and X is a standard Borel G-space, then E_G^X is hyperfinite.

Simon Thomas (Rutgers University)

Definition

The countable Borel equivalence relation E on X is said to be treeable iff there is a Borel acyclic graph (X, R) whose connected components are the E-classes.

Example

If the countable free group \mathbb{F} has a free Borel action on X, then the corresponding orbit equivalence relation $E_{\mathbb{F}}^{X}$ is treeable.

Theorem (Jackson-Kechris-Louveau)

If *E* is treeable, then there exists a free Borel action of a countable free group \mathbb{F} on a standard Borel space Y such that $E \sim_B E_{\mathbb{F}}^Y$.

Definition

Let $E_{\infty T}$ be the orbit equivalence relation arising from the free action of \mathbb{F}_2 on (2) \mathbb{F}_2 .

Theorem (Jackson-Kechris-Louveau)

 $E_{\infty T}$ is a universal treeable relation.

Question (Jackson-Kechris-Louveau)

Do there exist infinitely many nonsmooth treeable relations up to Borel bireducibility?

Remark

Currently, only 3 such relations are known; namely: E_0 , $E_{\infty T}$ and the other one(s).

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

17th November 2007

Theorem (Hjorth)

If E is a profinite treeable relation, then $E <_B E_{\infty T}$.

Example (Thomas)

Let S be a nonempty set of primes and regard $SL_2(\mathbb{Z})$ as a subgroup of

$$G(S) = \prod_{p \in S} SL_2(\mathbb{Z}_p)$$

via the diagonal embedding. Then the corresponding orbit equivalence relation E_S is a non-hyperfinite profinite treeable relation.

Conjecture (Thomas)

If $S \neq T$, then E_S and E_T are incomparable with respect to Borel bireducibility.

Conjecture (Thomas)

If S is any nonempty set of primes, then

$$E_S <_B E_S \oplus E_S <_B \cdots <_B \underbrace{E_S \oplus \cdots \oplus E_S}_{n \text{ times}} <_B \cdots$$

Simon Thomas (Rutgers University)

∽ ৭ ে ৰ 🗗 ৮ ৰ 🗐 17th November 2007

False Conjecture (Day)

If G is a countable nonamenable group, then G contains a free nonabelian subgroup.

Theorem (Ol'shanskii)

There exists a periodic nonamenable group.

Conjecture (Kechris)

If *E* is a non-hyperfinite countable Borel equivalence relation, then there exists a non-hyperfinite treeable relation *F* such that $F \leq_B E$.

Simon Thomas (Rutgers University)

∽ < <
 <

Conjecture (Hjorth)

If E is a universal countable Borel equivalence relation on the standard Borel space X and F is a countable Borel equivalence relation such that $E \subseteq F$, then F is also universal.

Question (Jackson-Kechris-Louveau)

Suppose that E is a universal countable Borel equivalence relation on the standard Borel space X and that $Y \subseteq X$ is an E-invariant Borel subset. Does it follow that either $E \upharpoonright Y$ or $E \upharpoonright (X \smallsetminus Y)$ is universal?

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ ৭ ়ে ৰ @ ► ৰ ≣ ► 17th November 2007

Some truly embarassing questions ...

Definition

If E, E' are countable Borel, then E' is a minimal cover of E iff:

- *E* <_{*B*} *E*'
- If the countable Borel F satisfies E ≤_B F ≤_B E', then either E ∼_B F or F ∼_B E'.

Open Problem

Find an example of a nonsmooth countable Borel equivalence relation which has a minimal cover.

Open Problem

Find an example of a nonuniversal countable Borel equivalence relation which doesn't have a minimal cover.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ < <
 <