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An application of Ioana Superrigidity

The Kechris Conjecture
≡T is universal.

Observation
There exists a universal countable Borel equivalence relation E on
P(N) such that E ⊆≡T .

Proof.
Identifying the free group F2 with a suitably chosen group of recursive
permutations of N, we have that E∞ ⊆≡T .
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An application of Ioana Superrigidity

Conjecture (Hjorth)
If F is a universal countable Borel equivalence relation on the standard
Borel space X and E is a countable Borel equivalence relation such
that F ⊆ E, then E is also universal.

Theorem (Thomas 2002)
There exists a pair of countable Borel equivalence relations F ⊆ E on
a standard Borel space X such that E <B F.
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The ring of p-adic integers

The ring Zp of p-adic integers is the inverse limit of the system

· · · ϕn+1−−−→ Z/pn+1Z ϕn−→ Z/pnZ
ϕn−1−−−→ · · · ϕ1−→ Z/pZ.

So we can express each z ∈ Zp as a formal sum

z = a0 + a1p + a2p2 + · · ·+ anpn + · · ·

where each 0 ≤ an < p.
The p-adic norm is given by

|z|p = p− ordp(z), ordp(z) = min{n | an 6= 0};

and the p-adic metric is given by

dp(x , y) = |x − y |p.
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The ring of p-adic integers

Theorem
Zp is a compact complete separable metric space.
Z is a dense subring of Zp.

Corollary
SLn(Zp) is a compact Polish group.
SLn(Z) is a dense subgroup of SLn(Zp).

Note that SLn(Zp) is the inverse limit of the system

· · · θn+1−−→ SLn(Z/pn+1Z)
θn−→ SLn(Z/pnZ)

θn−1−−−→ · · · θ1−→ SLn(Z/pZ).

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



The p-adic probability measure

Theorem
Since SLn(Zp) is a compact group, there exists a unique Haar
probability measure on SLn(Zp); i.e. a probability measure µp
which is invariant under the left translation action.

In fact, µp is simply the inverse limit of the counting measures on

· · · θn+1−−→ SLn(Z/pn+1Z)
θn−→ SLn(Z/pnZ)

θn−1−−−→ · · · θ1−→ SLn(Z/pZ).

Observation
If H 6 SLn(Zp) is an open subgroup, then H has finite index and

µp(H) =
1

[SLn(Zp) : H]
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The p-adic probability measure

Theorem
µp is the unique SLn(Z)-invariant probability measure on SLn(Zp).

Proof.
SLn(Zp) acts continuously on the space M of probability
measures on SLn(Zp).
Hence if ν is any probability measure on SLn(Zp), then

Sν = {g ∈ SLn(Zp) | ν is g-invariant }

is a closed subgroup of SLn(Zp).
Thus, by density, any SLn(Z)-invariant probability measure is
actually SLn(Zp)-invariant and hence must be µp.
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Unique ergodicity

Definition
The action of G on the standard probability space (X , µ) is uniquely
ergodic iff µ is the unique G-invariant probability measure on X.

Observation
If the action of G on (X , µ) is uniquely ergodic, then G acts ergodically.

Proof.
Suppose that there exists a G-invariant Borel subset A ⊆ X
with 0 < µ(A) < 1. Let B = X r A.
Then we can define distinct G-invariant probability measures by

ν1(Z ) = µ(Z ∩ A)/µ(A)

ν2(Z ) = µ(Z ∩ B)/µ(B).
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Ergodic Components

Observation
The action of SLn(Z) on SLn(Zp) is not strongly mixing.

Let Λ = kerϕ and H = kerψ be the kernels of the maps

ϕ : SLn(Z) → SLn(Z/pZ)

and
ψ : SLn(Zp) → SLn(Zp/pZp) ∼= SLn(Z/pZ).

Then H is the closure of Λ and the ergodic decomposition of the
Λ-action is given by

SLn(Zp) = Hg1 t · · · t Hgd , d = |SLn(Z/pZ)|.

The Hgi are the ergodic components of the Λ-action.
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Ergodic Components

Definition
Let F ⊆ E be the orbit equivalence relations of the actions of
Λ and SLn(Z) on SLn(Zp).

Theorem (Thomas 2002)
If n ≥ 3, then E <B F.

By considering the ergodic decomposition of the Λ-action

SLn(Zp) = Hg1 t · · · t Hgd , d = |SLn(Z/pZ)|,

we see that

F = E1 ⊕ · · · ⊕ Ed , where Ei = F � Hgi .
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Ei ∼B E for 1 ≤ i ≤ d .

First we claim that the inclusion map Hgi → SLn(Zp) is a Borel
reduction from Ei to E .
So suppose that x , y ∈ Hgi and that x E y .
Then there exists γ ∈ SLn(Z) such that γx = y .
It follows that

∅ 6= γHgi ∩ Hgi = Hγgi ∩ Hgi .

Hence γ ∈ SLn(Z) ∩ H = Λ and so x Ei y .
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Ei ∼B E for 1 ≤ i ≤ d .

In order to show that E ≤B Ei , we choose our coset
representatives gk so that each gk ∈ SLn(Z).
For each 1 ≤ k ≤ d , define hk : Hgk → Hgi by hk (x) = gig−1

k x .
We claim that h = h1 ∪ · · · ∪ hd is a Borel reduction from E to Ei .
If x , y ∈ SLn(Zp), then

x E y iff h(x) E h(y)

iff h(x) Ei h(y).

The last equivalence follows because h(x), h(y) ∈ Hgi .
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The Heart of the Matter

Lemma
If F ⊆ E are the orbit equivalence relations of the actions of
Λ and SLn(Z) on SLn(Zp), then

F ∼B E ⊕ · · · ⊕ E︸ ︷︷ ︸
d times

.

Hence it is enough to prove ...

Theorem
If n ≥ 3, then

E <B E ⊕ E <B · · · <B E ⊕ · · · ⊕ E︸ ︷︷ ︸
d times

<B · · ·
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The Heart of the Matter

Some Notation
( K , µ ) = ( SLn(Zp), µp ).
Γ = SLn(Z).
E is the orbit equivalence relation of Γ on K .

Then it’s enough to prove ...

Theorem
If f : K → K is a Borel reduction from E to E, then

µ( Γ · f [K ] ) = 1.
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The proof begins

Suppose that f : K → K is a Borel reduction from E to E .
Then we can define a Borel cocycle α : Γ× K → Γ by

α(g, x) = the unique h ∈ H such that h · f (x) = f (g · x).

By Ioana Superrigidity, there exists
a subgroup ∆ 6 Γ of finite index
an ergodic component X ⊆ K for the ∆-action

such that α � (∆× X ) is equivalent to a group homomorphism

ψ : ∆ → SLn(Z).

After slightly adjusting f , we can suppose that α � (∆× X ) = ψ.
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An application of Margulis Superrigidity

To simplify the presentation, suppose that n ≥ 3 is odd.

Theorem
Suppose that ∆ 6 SLn(Z) is a subgroup of finite index and that

ψ : ∆ → SLn(Z)

is a group homomorphism. Then either:
ψ[∆] is finite; or
ψ is an embedding and ψ[∆] is a subgroup of finite index
in SLn(Z).
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Case 1

Suppose that ψ[∆] is finite.
Recall that ψ(g) · f (x) = f (g · x) for all g ∈ ∆ and x ∈ X .
Thus we can define a ∆-invariant map Φ : X → [K ]<ω by

Φ(x) = { f (g · x) | g ∈ ∆ }.

Since ∆ acts ergodically on X , it follows that Φ is constant
on a µ-conull subset of X , which is a contradiction.
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Case 2

Suppose that ψ is an embedding and that ψ[∆] is a subgroup
of finite index in SLn(Z).
Let Y1, · · · ,Yd be the ergodic components for the action of
ψ[∆] on K .
Since ∆ acts ergodically on X , we can suppose that there
exists Y = Yi such that f : X → Y .
Since ψ(g) · f (x) = f (g · x), we can define a ψ[∆]-invariant
probability measure ν on Y by

ν( Z ) = µ( f−1(Z ) )/µ(X ).

Since the action of ψ[∆] on Y is uniquely ergodic,

ν(Z ) = µ(Z )/µ(Y ).

Hence µ( f [X ] ) = µ(Y ) > 0 and so µ( Γ · f [K ] ) = 1.
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Ioana’s Cocycle Superrigidity Theorem

Theorem (Ioana)
Let Γ be a countably infinite Kazhdan group and let (X , µ) be
a free ergodic profinite Γ-space.
Suppose that H is any countable group and that α : Γ× X → H
is a Borel cocycle.
Then there exists a subgroup ∆ 6 Γ of finite index and an
ergodic component Y ⊆ X for the ∆-action such that
α � (∆× Y ) is equivalent to a homomorphism ψ : ∆ → H.
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Profinite Actions

Definition
Let Γ be a countable group.
For each n ∈ N, let ( Xn, µn ) be a finite Γ-space, where
µn(Y ) = |Y |/|Xn|.
Suppose that each ( Xn, µn ) is a quotient of ( Xn+1, µn+1 ); say,

· · · qn+1−−−→ ( Xn+1, µn+1 )
qn−→ ( Xn, µn )

qn−1−−−→ · · · q0−→ ( X0, µ0 ).

Then the canonical action of Γ on

( X , µ ) = lim
←

( Xn, µn )

is said to be a profinite action.
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Examples of Profinite Actions

Definition
A countably infinite group Γ is residually finite iff there exists a
chain of finite index normal subgroups

Γ0 > Γ1 > · · · > Γn > · · ·

such that
⋂

Γn = 1.
Then Γ is a dense subgroup of the profinite group lim

←
Γ/Γn.

Example
Let K be a profinite group and let Γ be a countable dense subgroup. If
L is a closed subgroup of K , then the action of Γ on K/L is profinite.

Example
The action of SLn(Z) on the projective space PG(n− 1,Qp) is profinite.
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A final application of Ioana Superrigidity

Definition
Fix some n ≥ 3. Let S be a nonempty set of primes and regard
SLn(Z) as a subgroup of

G(S) =
∏
p∈S

SLn(Zp)

via the diagonal embedding. Let ES be the corresponding orbit
equivalence relation.

Theorem (Thomas 2002)
If S 6= T , then ES and ET are incomparable with respect to Borel
bireducibility.
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Sketch of Proof

For simplicity, suppose that S = {p } and T = {q }, where
p 6= q are distinct primes.
Suppose that f : SLn(Zp) → SLn(Zq) is a Borel reduction
from E{p} to E{q}.
Then arguing as above, after passing to subgroups of finite index
and ergodic components if necessary, we find that

( SLn(Z),SLn(Zp), µp ) ∼= ( SLn(Z),SLn(Zq), µq )

as measure-preserving permutation groups.

Basic Problem
How can we recognize the prime p in ( SLn(Z),SLn(Zp), µp )?
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The Automorphism Group

Definition
Aut( SLn(Z),SLn(Zp), µp ) consists of the measure-preserving
bijections ϕ : SLn(Zp) → SLn(Zp) such that for all γ ∈ SLn(Z),

ϕ(γ · x) = γ · ϕ(x) for µp-a.e. x .

As usual, we identify two such maps if they agree µp-a.e.

Example
For each g ∈ SLn(Zp), we can define a corresponding automorphism
by ϕ(x) = x g.

Proposition (Gefter-Golodets 1988)
Aut( SLn(Z),SLn(Zp), µp ) = SLn(Zp).
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Proof of Gefter-Golodets

Suppose that ϕ ∈ Aut( SLn(Z),SLn(Zp), µp ).
For each x ∈ SLn(Zp), let h(x) ∈ SLn(Zp) be such that

ϕ(x) = x h(x).

If γ ∈ SLn(Z), then

ϕ(γ · x) = γ · ϕ(x) = γ · x h(x)

and so h(γ · x) = h(x).
Since SLn(Z) acts ergodically on ( SLn(Zp), µp ), there
exists g ∈ SLn(Zp) such that

h(x) = g for µp-a.e. x .
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The Punchline

Basic Question
How do we recognize the prime p in the topological group SLn(Zp)?

Theorem (Folklore)
SLn(Zp) is “virtually” a pro-p group.
More precisely, if H is any open subgroup, then

[ SLn(Zp) : H ] = b p`

for some ` ≥ 0 and some divisor b of |SLn(Z/pZ)|.
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Open Problems

Finally I will mention some long outstanding open problems
concerning:

Hyperfinite relations

Treeable relations

Universal relations
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Hyperfinite relations

Theorem (Dougherty-Jackson-Kechris)
If E is a countable Borel equivalence relation on a standard Borel
space X, then the following are equivalent:
(a) E ≤B E0.
(b) E is hyperfinite; i.e. there exists an increasing sequence

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·

of finite Borel equivalence relations on X such that E =
⋃

n∈N Fn.
(c) There exists a Borel action of Z on X such that E = EX

Z .
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Hyperfinite relations

Theorem (Jackson-Kechris-Louveau)
If G is a countable nonamenable group, then EG is not hyperfinite.

Remark
Recall that EG is the orbit equivalence relation arising from the free
action of G on ( (2)G, µ ).

Question (Weiss)
Suppose that G is a countable amenable group and that X is a
standard Borel G-space. Does it follow that EX

G is hyperfinite?
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Hyperfinite relations

Theorem (Connes-Feldman-Weiss)
Suppose that G is a countable amenable group and that X is a
standard Borel G-space. If µ is any Borel probability measure on X,
then there exists a Borel subset Y ⊆ X with µ(Y ) = 1 such that
E � Y is hyperfinite.

Theorem (Gao-Jackson)
If G is a countable abelian group and X is a standard Borel G-space,
then EX

G is hyperfinite.
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Treeable relations

Definition
The countable Borel equivalence relation E on X is said to be treeable
iff there is a Borel acyclic graph ( X ,R ) whose connected components
are the E-classes.

Example
If the countable free group F has a free Borel action on X , then the
corresponding orbit equivalence relation EX

F is treeable.

Theorem (Jackson-Kechris-Louveau)
If E is treeable, then there exists a free Borel action of a countable free
group F on a standard Borel space Y such that E ∼B EY

F .
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Treeable relations

Definition
Let E∞T be the orbit equivalence relation arising from the free action
of F2 on (2)F2 .

Theorem (Jackson-Kechris-Louveau)
E∞T is a universal treeable relation.

Question (Jackson-Kechris-Louveau)
Do there exist infinitely many nonsmooth treeable relations up to Borel
bireducibility?

Remark
Currently, only 3 such relations are known; namely: E0, E∞T and the
other one(s).
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Treeable relations

Theorem (Hjorth)
If E is a profinite treeable relation, then E <B E∞T .

Example (Thomas)
Let S be a nonempty set of primes and regard SL2(Z) as a subgroup of

G(S) =
∏
p∈S

SL2(Zp)

via the diagonal embedding. Then the corresponding orbit equivalence
relation ES is a non-hyperfinite profinite treeable relation.
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Treeable relations

Conjecture (Thomas)
If S 6= T , then ES and ET are incomparable with respect to Borel
bireducibility.

Conjecture (Thomas)
If S is any nonempty set of primes, then

ES <B ES ⊕ ES <B · · · <B ES ⊕ · · · ⊕ ES︸ ︷︷ ︸
n times

<B · · ·
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An implausible analog of the von Neumann Conjecture

False Conjecture (Day)
If G is a countable nonamenable group, then G contains a free
nonabelian subgroup.

Theorem (Ol’shanskii)
There exists a periodic nonamenable group.

Conjecture (Kechris)
If E is a non-hyperfinite countable Borel equivalence relation, then
there exists a non-hyperfinite treeable relation F such that F ≤B E.
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Some truly embarassing questions ...

Conjecture (Hjorth)
If E is a universal countable Borel equivalence relation on the standard
Borel space X and F is a countable Borel equivalence relation such
that E ⊆ F, then F is also universal.

Question (Jackson-Kechris-Louveau)
Suppose that E is a universal countable Borel equivalence relation on
the standard Borel space X and that Y ⊆ X is an E-invariant Borel
subset. Does it follow that either E � Y or E � (X r Y ) is universal?

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



Some truly embarassing questions ...

Definition
If E, E ′ are countable Borel, then E ′ is a minimal cover of E iff:

E <B E ′

If the countable Borel F satisfies E ≤B F ≤B E ′, then either
E ∼B F or F ∼B E ′.

Open Problem
Find an example of a nonsmooth countable Borel equivalence relation
which has a minimal cover.

Open Problem
Find an example of a nonuniversal countable Borel equivalence
relation which doesn’t have a minimal cover.
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