Countable Borel Equivalence Relations IV

Simon Thomas

Rutgers University

17th November 2007
An application of Ioana Superrigidity

The Kechris Conjecture

\equiv_T is universal.

Observation

There exists a universal countable Borel equivalence relation E on $\mathcal{P}(\mathbb{N})$ such that $E \subseteq \equiv_T$.

Proof.

Identifying the free group \mathbb{F}_2 with a suitably chosen group of recursive permutations of \mathbb{N}, we have that $E_\infty \subseteq \equiv_T$.

Simon Thomas (Rutgers University)
Appalachian Set Theory Workshop
17th November 2007
An application of Ioana Superrigidity

Conjecture (Hjorth)

If F *is a universal countable Borel equivalence relation on the standard Borel space* X *and* E *is a countable Borel equivalence relation such that* $F \subseteq E$, *then* E *is also universal.*

Theorem (Thomas 2002)

There exists a pair of countable Borel equivalence relations $F \subseteq E$ *on a standard Borel space* X *such that* $E \prec_B F$.
The ring of p-adic integers

- The ring \mathbb{Z}_p of p-adic integers is the inverse limit of the system

 $\cdots \xrightarrow{\varphi_{n+1}} \mathbb{Z}/p^{n+1}\mathbb{Z} \xrightarrow{\varphi_n} \mathbb{Z}/p^n\mathbb{Z} \xrightarrow{\varphi_{n-1}} \cdots \xrightarrow{\varphi_1} \mathbb{Z}/p\mathbb{Z}.$

- So we can express each $z \in \mathbb{Z}_p$ as a formal sum

 $$z = a_0 + a_1 p + a_2 p^2 + \cdots + a_n p^n + \cdots$$

 where each $0 \leq a_n < p$.

- The p-adic norm is given by

 $$|z|_p = p^{-\text{ord}_p(z)}, \quad \text{ord}_p(z) = \min\{n \mid a_n \neq 0\};$$

 and the p-adic metric is given by

 $$d_p(x, y) = |x - y|_p.$$
The ring of p-adic integers

Theorem

- \mathbb{Z}_p is a compact complete separable metric space.
- \mathbb{Z} is a dense subring of \mathbb{Z}_p.

Corollary

- $SL_n(\mathbb{Z}_p)$ is a compact Polish group.
- $SL_n(\mathbb{Z})$ is a dense subgroup of $SL_n(\mathbb{Z}_p)$.

Note that $SL_n(\mathbb{Z}_p)$ is the inverse limit of the system

$$\cdots \xrightarrow{\theta_{n+1}} SL_n(\mathbb{Z}/p^{n+1}\mathbb{Z}) \xrightarrow{\theta_n} SL_n(\mathbb{Z}/p^n\mathbb{Z}) \xrightarrow{\theta_{n-1}} \cdots \xrightarrow{\theta_1} SL_n(\mathbb{Z}/p\mathbb{Z}).$$
The p-adic probability measure

Theorem

Since $\text{SL}_n(\mathbb{Z}_p)$ is a compact group, there exists a unique **Haar probability measure** on $\text{SL}_n(\mathbb{Z}_p)$; i.e. a probability measure μ_p which is invariant under the left translation action.

In fact, μ_p is simply the inverse limit of the counting measures on

$$\ldots \xrightarrow{\theta_{n+1}} \text{SL}_n(\mathbb{Z}/p^{n+1}\mathbb{Z}) \xrightarrow{\theta_n} \text{SL}_n(\mathbb{Z}/p^n\mathbb{Z}) \xrightarrow{\theta_{n-1}} \ldots \xrightarrow{\theta_1} \text{SL}_n(\mathbb{Z}/p\mathbb{Z}).$$

Observation

If $H \leq \text{SL}_n(\mathbb{Z}_p)$ is an open subgroup, then H has finite index and

$$\mu_p(H) = \frac{1}{[\text{SL}_n(\mathbb{Z}_p) : H]}.$$
The p-adic probability measure

Theorem

μ_p is the unique $SL_n(\mathbb{Z})$-invariant probability measure on $SL_n(\mathbb{Z}_p)$.

Proof.

- $SL_n(\mathbb{Z}_p)$ acts continuously on the space \mathcal{M} of probability measures on $SL_n(\mathbb{Z}_p)$.
- Hence if ν is any probability measure on $SL_n(\mathbb{Z}_p)$, then

$$S_\nu = \{ g \in SL_n(\mathbb{Z}_p) \mid \nu \text{ is } g\text{-invariant} \}$$

is a closed subgroup of $SL_n(\mathbb{Z}_p)$.

- Thus, by density, any $SL_n(\mathbb{Z})$-invariant probability measure is actually $SL_n(\mathbb{Z}_p)$-invariant and hence must be μ_p.

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007
Unique ergodicity

Definition

The action of G on the standard probability space (X, μ) is uniquely ergodic iff μ is the unique G-invariant probability measure on X.

Observation

If the action of G on (X, μ) is uniquely ergodic, then G acts ergodically.

Proof.

Suppose that there exists a G-invariant Borel subset $A \subseteq X$ with $0 < \mu(A) < 1$. Let $B = X \setminus A$.

Then we can define distinct G-invariant probability measures by

\[
\nu_1(Z) = \frac{\mu(Z \cap A)}{\mu(A)} \\
\nu_2(Z) = \frac{\mu(Z \cap B)}{\mu(B)}.
\]
Ergodic Components

Observation

The action of $SL_n(\mathbb{Z})$ on $SL_n(\mathbb{Z}_p)$ is not strongly mixing.

- Let $\Lambda = \ker \varphi$ and $H = \ker \psi$ be the kernels of the maps

 $$\varphi : SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/p\mathbb{Z})$$

 and

 $$\psi : SL_n(\mathbb{Z}_p) \to SL_n(\mathbb{Z}_p/p\mathbb{Z}_p) \cong SL_n(\mathbb{Z}/p\mathbb{Z}).$$

- Then H is the closure of Λ and the ergodic decomposition of the Λ-action is given by

 $$SL_n(\mathbb{Z}_p) = Hg_1 \sqcup \cdots \sqcup Hg_d, \quad d = |SL_n(\mathbb{Z}/p\mathbb{Z})|.$$

- The Hg_i are the ergodic components of the Λ-action.
Ergodic Components

Definition

Let $F \subseteq E$ be the orbit equivalence relations of the actions of Λ and $SL_n(\mathbb{Z})$ on $SL_n(\mathbb{Z}_p)$.

Theorem (Thomas 2002)

If $n \geq 3$, then $E <_B F$.

By considering the ergodic decomposition of the Λ-action

$$SL_n(\mathbb{Z}_p) = Hg_1 \sqcup \cdots \sqcup Hg_d, \quad d = |SL_n(\mathbb{Z}/p\mathbb{Z})|,$$

we see that

$$F = E_1 \oplus \cdots \oplus E_d, \quad \text{where } E_i = F \upharpoonright Hg_i.$$
$E_i \sim_B E$ for $1 \leq i \leq d$.

- First we claim that the inclusion map $Hg_i \to SL_n(\mathbb{Z}_p)$ is a Borel reduction from E_i to E.
- So suppose that $x, y \in Hg_i$ and that $x E y$.
- Then there exists $\gamma \in SL_n(\mathbb{Z})$ such that $\gamma x = y$.
- It follows that
 \[
 \emptyset \neq \gamma Hg_i \cap Hg_i = H \gamma g_i \cap Hg_i.
 \]
- Hence $\gamma \in SL_n(\mathbb{Z}) \cap H = \Lambda$ and so $x E_i y$.
In order to show that $E \leq_B E_i$, we choose our coset representatives g_k so that each $g_k \in SL_n(\mathbb{Z})$.

For each $1 \leq k \leq d$, define $h_k : Hg_k \rightarrow Hg_i$ by $h_k(x) = g_i g_k^{-1} x$.

We claim that $h = h_1 \cup \cdots \cup h_d$ is a Borel reduction from E to E_i.

If $x, y \in SL_n(\mathbb{Z}_p)$, then

$$x E y \iff h(x) E h(y) \iff h(x) E_i h(y).$$

The last equivalence follows because $h(x), h(y) \in Hg_i$.

$E_i \sim_B E$ for $1 \leq i \leq d$.

Lemma

If $F \subseteq E$ are the orbit equivalence relations of the actions of Λ and $SL_n(\mathbb{Z})$ on $SL_n(\mathbb{Z}_p)$, then

$$F \sim_B E \oplus \cdots \oplus E.$$

d d times

Hence it is enough to prove ...

Theorem

If $n \geq 3$, then

$$E <_B E \oplus E <_B \cdots <_B E \oplus \cdots \oplus E <_B \cdots$$

d d times
Some Notation

- \((K, \mu) = (\text{SL}_n(\mathbb{Z}_p), \mu_p)\).
- \(\Gamma = \text{SL}_n(\mathbb{Z})\).
- \(E\) is the orbit equivalence relation of \(\Gamma\) on \(K\).

Then it’s enough to prove ...

Theorem

If \(f : K \rightarrow K\) *is a Borel reduction from* \(E\) *to* \(E\), *then*

\[
\mu(\Gamma \cdot f[K]) = 1.
\]
The proof begins

- Suppose that \(f : K \to K \) is a Borel reduction from \(E \) to \(E \).
- Then we can define a Borel cocycle \(\alpha : \Gamma \times K \to \Gamma \) by
 \[
 \alpha(g, x) = \text{the unique } h \in H \text{ such that } h \cdot f(x) = f(g \cdot x).
 \]

- By Ioana Superrigidity, there exists
 - a subgroup \(\Delta \leq \Gamma \) of finite index
 - an ergodic component \(X \subseteq K \) for the \(\Delta \)-action
 such that \(\alpha \restriction (\Delta \times X) \) is equivalent to a group homomorphism
 \[
 \psi : \Delta \to \text{SL}_n(\mathbb{Z}).
 \]

- After slightly adjusting \(f \), we can suppose that \(\alpha \restriction (\Delta \times X) = \psi \).
An application of Margulis Superrigidity

To simplify the presentation, suppose that \(n \geq 3 \) is odd.

Theorem

Suppose that \(\Delta \leq SL_n(\mathbb{Z}) \) is a subgroup of finite index and that \(\psi : \Delta \rightarrow SL_n(\mathbb{Z}) \) is a group homomorphism. Then either:

- \(\psi[\Delta] \) is finite; or
- \(\psi \) is an embedding and \(\psi[\Delta] \) is a subgroup of finite index in \(SL_n(\mathbb{Z}) \).
Suppose that $\psi[\Delta]$ is finite.
Recall that $\psi(g) \cdot f(x) = f(g \cdot x)$ for all $g \in \Delta$ and $x \in X$.
Thus we can define a Δ-invariant map $\Phi : X \to [K]^{<\omega}$ by
\[\Phi(x) = \{ f(g \cdot x) \mid g \in \Delta \}. \]
Since Δ acts ergodically on X, it follows that Φ is constant on a μ-conull subset of X, which is a contradiction.
Case 2

- Suppose that ψ is an embedding and that $\psi[\Delta]$ is a subgroup of finite index in $SL_n(\mathbb{Z})$.
- Let Y_1, \cdots, Y_d be the ergodic components for the action of $\psi[\Delta]$ on K.
- Since Δ acts ergodically on X, we can suppose that there exists $Y = Y_i$ such that $f : X \to Y$.
- Since $\psi(g) \cdot f(x) = f(g \cdot x)$, we can define a $\psi[\Delta]$-invariant probability measure ν on Y by
 \[\nu(Z) = \frac{\mu(f^{-1}(Z))}{\mu(X)}. \]
- Since the action of $\psi[\Delta]$ on Y is uniquely ergodic,
 \[\nu(Z) = \frac{\mu(Z)}{\mu(Y)}. \]
- Hence $\mu(f[X]) = \mu(Y) > 0$ and so $\mu(\Gamma \cdot f[K]) = 1$.
Theorem (Ioana)

Let Γ be a countably infinite Kazhdan group and let (X, μ) be a free ergodic profinite Γ-space.

Suppose that H is any countable group and that $\alpha : \Gamma \times X \to H$ is a Borel cocycle.

Then there exists a subgroup $\Delta \leq \Gamma$ of finite index and an ergodic component $Y \subseteq X$ for the Δ-action such that $\alpha \upharpoonright (\Delta \times Y)$ is equivalent to a homomorphism $\psi : \Delta \to H$.
Profinite Actions

Definition

Let Γ be a countable group.

For each $n \in \mathbb{N}$, let (X_n, μ_n) be a finite Γ-space, where $\mu_n(Y) = |Y|/|X_n|$. Suppose that each (X_n, μ_n) is a quotient of (X_{n+1}, μ_{n+1}); say,

$$
\cdots \xrightarrow{q_{n+1}} (X_{n+1}, \mu_{n+1}) \xrightarrow{q_n} (X_n, \mu_n) \xrightarrow{q_{n-1}} \cdots \xrightarrow{q_0} (X_0, \mu_0).
$$

Then the canonical action of Γ on

$$(X, \mu) = \lim_{\leftarrow} (X_n, \mu_n)$$

is said to be a profinite action.
Examples of Profinite Actions

Definition

A countably infinite group Γ is *residually finite* iff there exists a chain of finite index normal subgroups

$$\Gamma_0 > \Gamma_1 > \cdots > \Gamma_n > \cdots$$

such that $\bigcap \Gamma_n = 1$.

Then Γ is a dense subgroup of the profinite group $\lim \leftarrow \Gamma / \Gamma_n$.

Example

Let K be a profinite group and let Γ be a countable dense subgroup. If L is a closed subgroup of K, then the action of Γ on K/L is profinite.

Example

The action of $SL_n(\mathbb{Z})$ on the projective space $PG(n-1, \mathbb{Q}_p)$ is profinite.
A final application of Ioana Superrigidity

Definition

Fix some $n \geq 3$. Let S be a nonempty set of primes and regard $SL_n(\mathbb{Z})$ as a subgroup of $G(S) = \prod_{p \in S} SL_n(\mathbb{Z}_p)$ via the diagonal embedding. Let E_S be the corresponding orbit equivalence relation.

Theorem (Thomas 2002)

If $S \neq T$, then E_S and E_T are incomparable with respect to Borel bireducibility.
Sketch of Proof

- For simplicity, suppose that $S = \{ p \}$ and $T = \{ q \}$, where $p \neq q$ are distinct primes.
- Suppose that $f : SL_n(\mathbb{Z}_p) \to SL_n(\mathbb{Z}_q)$ is a Borel reduction from $E\{p\}$ to $E\{q\}$.
- Then arguing as above, after passing to subgroups of finite index and ergodic components if necessary, we find that
 \[(SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p) \cong (SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_q), \mu_q) \]
 as measure-preserving permutation groups.

Basic Problem

How can we recognize the prime p in $(SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p)$?
The Automorphism Group

Definition

- \(\text{Aut}(SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p) \) consists of the measure-preserving bijections \(\varphi : SL_n(\mathbb{Z}_p) \rightarrow SL_n(\mathbb{Z}_p) \) such that for all \(\gamma \in SL_n(\mathbb{Z}) \),

\[
\varphi(\gamma \cdot x) = \gamma \cdot \varphi(x) \quad \text{for } \mu_p\text{-a.e. } x.
\]

- As usual, we identify two such maps if they agree \(\mu_p\)-a.e.

Example

For each \(g \in SL_n(\mathbb{Z}_p) \), we can define a corresponding automorphism by \(\varphi(x) = x \cdot g \).

Proposition (Gefter-Golodets 1988)

\(\text{Aut}(SL_n(\mathbb{Z}), SL_n(\mathbb{Z}_p), \mu_p) = SL_n(\mathbb{Z}_p) \).
Proof of Gefter-Golodets

- Suppose that $\varphi \in \text{Aut}(\text{SL}_n(\mathbb{Z}), \text{SL}_n(\mathbb{Z}_p), \mu_p)$.
- For each $x \in \text{SL}_n(\mathbb{Z}_p)$, let $h(x) \in \text{SL}_n(\mathbb{Z}_p)$ be such that
 $$\varphi(x) = x \cdot h(x).$$

- If $\gamma \in \text{SL}_n(\mathbb{Z})$, then
 $$\varphi(\gamma \cdot x) = \gamma \cdot \varphi(x) = \gamma \cdot x \cdot h(x)$$
 and so $h(\gamma \cdot x) = h(x)$.

- Since $\text{SL}_n(\mathbb{Z})$ acts ergodically on $(\text{SL}_n(\mathbb{Z}_p), \mu_p)$, there exists $g \in \text{SL}_n(\mathbb{Z}_p)$ such that
 $$h(x) = g \quad \text{for } \mu_p\text{-a.e. } x.$$
The Punchline

Basic Question

How do we recognize the prime p in the topological group $SL_n(\mathbb{Z}_p)$?

Theorem (Folklore)

- $SL_n(\mathbb{Z}_p)$ is “virtually” a pro-p group.
- More precisely, if H is any open subgroup, then

$$[SL_n(\mathbb{Z}_p) : H] = b \, p^\ell$$

for some $\ell \geq 0$ and some divisor b of $|SL_n(\mathbb{Z}/p\mathbb{Z})|$.
Finally I will mention some long outstanding open problems concerning:

- Hyperfinite relations
- Treeable relations
- Universal relations
Hyperfinite relations

Theorem (Dougherty-Jackson-Kechris)

If E is a countable Borel equivalence relation on a standard Borel space X, then the following are equivalent:

(a) $E \leq_{B} E_0$.

(b) E is **hyperfinite**; i.e. there exists an increasing sequence

$$F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq \cdots$$

of finite Borel equivalence relations on X such that $E = \bigcup_{n \in \mathbb{N}} F_n$.

(c) There exists a Borel action of \mathbb{Z} on X such that $E = E^X_{\mathbb{Z}}$.

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007
Theorem (Jackson-Kechris-Louveau)

If G is a countable nonamenable group, then E_G is not hyperfinite.

Remark

Recall that E_G is the orbit equivalence relation arising from the free action of G on $(\mathbb{2}^G, \mu)$.

Question (Weiss)

Suppose that G is a countable amenable group and that X is a standard Borel G-space. Does it follow that E^X_G is hyperfinite?
Hyperfinite relations

Theorem (Connes-Feldman-Weiss)
Suppose that G is a countable amenable group and that X is a standard Borel G-space. If μ is any Borel probability measure on X, then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \restriction Y$ is hyperfinite.

Theorem (Gao-Jackson)
If G is a countable abelian group and X is a standard Borel G-space, then E^X_G is hyperfinite.
Definition

The countable Borel equivalence relation E on X is said to be **treeable** iff there is a Borel acyclic graph (X, R) whose connected components are the E-classes.

Example

If the countable free group F has a free Borel action on X, then the corresponding orbit equivalence relation E^X_F is treeable.

Theorem (Jackson-Kechris-Louveau)

If E is treeable, then there exists a free Borel action of a countable free group F on a standard Borel space Y such that $E \sim_B E^Y_F$.

Simon Thomas (Rutgers University)
Appalachian Set Theory Workshop
17th November 2007
Treeable relations

Definition

Let $E_{\infty T}$ be the orbit equivalence relation arising from the free action of F_2 on $(2)^{F_2}$.

Theorem (Jackson-Kechris-Louveau)

$E_{\infty T}$ is a universal treeable relation.

Question (Jackson-Kechris-Louveau)

Do there exist infinitely many nonsmooth treeable relations up to Borel bireducibility?

Remark

Currently, only 3 such relations are known; namely: E_0, $E_{\infty T}$ and the other one(s).
Theorem (Hjorth)

If E is a profinite treeable relation, then $E \prec_B E_\infty^T$.

Example (Thomas)

Let S be a nonempty set of primes and regard $SL_2(\mathbb{Z})$ as a subgroup of $G (S) = \prod_{p \in S} SL_2(\mathbb{Z}_p)$ via the diagonal embedding. Then the corresponding orbit equivalence relation E_S is a non-hyperfinite profinite treeable relation.
Conjecture (Thomas)

If $S \neq T$, then E_S and E_T are incomparable with respect to Borel bireducibility.

Conjecture (Thomas)

If S is any nonempty set of primes, then

$$E_S <_B E_S \oplus E_S <_B \cdots <_B E_S \oplus \cdots \oplus E_S <_B \cdots$$

n times
An implausible analog of the von Neumann Conjecture

False Conjecture (Day)

If G is a countable nonamenable group, then G contains a free nonabelian subgroup.

Theorem (Ol’shanskii)

There exists a periodic nonamenable group.

Conjecture (Kechris)

If E is a non-hyperfinite countable Borel equivalence relation, then there exists a non-hyperfinite treeable relation F such that \(F \leq_B E \).
Conjecture (Hjorth)

If E is a universal countable Borel equivalence relation on the standard Borel space X and F is a countable Borel equivalence relation such that $E \subseteq F$, then F is also universal.

Question (Jackson-Kechris-Louveau)

Suppose that E is a universal countable Borel equivalence relation on the standard Borel space X and that $Y \subseteq X$ is an E-invariant Borel subset. Does it follow that either $E \upharpoonright Y$ or $E \upharpoonright (X \setminus Y)$ is universal?
Some truly embarassing questions ...

Definition

If E, E' are countable Borel, then E' is a **minimal cover** of E iff:

- $E <_B E'$
- If the countable Borel F satisfies $E \leq_B F \leq_B E'$, then either $E \sim_B F$ or $F \sim_B E'$.

Open Problem

Find an example of a nonsmooth countable Borel equivalence relation which **has** a minimal cover.

Open Problem

Find an example of a nonuniversal countable Borel equivalence relation which **doesn’t have** a minimal cover.