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A quick recap

The Fundamental Question
Let G be a countable group and let X be a standard Borel G-space.
To what extent does the data (X , EX

G ) “remember” the group G and
its action on X?

More accurately, to what extent does the data (C, EX
G � C) “remember”

the group G and its action on X , where C is an arbitary Borel complete
section?

Further Hypotheses
We shall usually also assume that:

G acts freely on X ; i.e. g · x 6= x for all 1 6= g ∈ G and x ∈ X .
There exists a G-invariant probability measure µ on X .
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Ergodicity

Definition
Let G be a countable group and let X be a standard Borel G-space.
Then the G-invariant probability measure µ is said to be ergodic iff
µ(A) = 0, 1 for every G-invariant Borel subset A ⊆ X.

Theorem
If µ is a G-invariant probability measure on the standard Borel G-space
X, then the following statements are equivalent.

The action of G on (X , µ) is ergodic.
If Y is a standard Borel space and f : X → Y is a G-invariant
Borel function, then there exists a G-invariant Borel subset
M ⊆ X with µ(M) = 1 such that f � M is a constant function.
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Strong mixing

Definition
The action of G on the standard probability space (X , µ) is strongly
mixing iff for any Borel subsets A, B ⊆ X, we have that

µ(g(A) ∩ B) → µ(A) · µ(B) as g →∞.

In other words, if 〈gn | n ∈ N〉 is any sequence of distinct elements
of G, then

lim
n→∞

µ(gn(A) ∩ B) = µ(A) · µ(B).

Observation
If H 6 G is an infinite subgroup of G, then the action of H on (X , µ) is
also strongly mixing.
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Strong mixing continued

Observation
If the action of G on (X , µ) is strongly mixing, then G acts ergodically
on (X , µ).

Proof.
If A ⊆ X is a G-invariant Borel subset, then

µ(A)2 = lim
g→∞

µ(g(A) ∩ A) = lim
g→∞

µ(A) = µ(A).

Hence µ(A) = 0, 1.

Remark
With more effort, it can be shown that for each n ≥ 2, the diagonal
action of G on (X n, µn) is also ergodic.
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Bernoulli actions are strongly mixing

Theorem
The action of G on ( (2)G, µ ) is strongly mixing.

Consider the case when there exist finite subsets S, T ⊂ G and
subsets F ⊆ 2S, G ⊆ 2T such that A = {f ∈ (2)G | f � S ∈ F} and
B = {f ∈ (2)G | f � T ∈ G}.
If 〈gn | n ∈ N〉 is a sequence of distinct elements of G, then

gn(S) ∩ T = ∅

for all but finitely many n.
This means that gn(A), B are independent events and so

µ(gn(A) ∩ B) = µ(gn(A)) · µ(B) = µ(A) · µ(B).
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Borel cocycles

Let G be a countable group and let X be a standard Borel
G-space with invariant ergodic probability measure µ.
Suppose that the countable group H has a free Borel action on Y
and that

f : X → Y

is a Borel homomorphism between the corresponding orbit
equivalence relations.
Then we can define a Borel cocycle

α : G × X → H

by setting

α(g, x) = the unique h ∈ H such that h · f (x) = f (g · x).
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The cocycle identity

Note that
f (x)

α(g,x)−−−−→ f (g · x)
α(h,g·x)−−−−−→ f (hg · x)

and hence we have the identity:

α(hg, x) = α(h, g · x)α(g, x) µ-a.e x

In particular, f is a permutation group homomorphism iff

α(g, x) = α(g)

is a group homomorphism.

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



Cocycle equivalence
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Popa’s Cocycle Superrigidity Theorem

Theorem (Popa)
Let Γ be a countably infinite Kazhdan group and let G be a countable
group such that Γ E G. If H is any countable group, then every Borel
cocycle

α : G × (2)G → H

is equivalent to a group homomorphism of G into H.

Remarks
For example, we let Γ = SLn(Z) for any n ≥ 3.
For example, we can let G = Γ× S, where S is any countable
group.
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An easy consequence of Popa Superrigidity

Definition
EG denotes the orbit equivalence relation of the Bernoulli action of the
countable group on ( (2)G, µ ).

Theorem
Let G = SL3(Z)× S, where S is any countable group.
Let H be any countable group and let Y be a free standard
Borel H-space.

If there exists a µ-nontrivial Borel homomorphism from EG to EY
H , then

there exists a virtual embedding π : G → H.
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Proof of Theorem

Suppose that f : (2)G → Y is a µ-nontrivial Borel homomorphism
from EG to EY

H .
Then we can define a Borel cocycle α : G × (2)G → H by

α(g, x) = the unique h ∈ H such that h · f (x) = f (g · x).

By Popa, after deleting a nullset and slightly adjusting f , we can
suppose that α : G → H is a group homomorphism.
Suppose that K = ker α is infinite.
First note that if k ∈ K , then f (k · x) = α(k) · f (x) = f (x) and so
f : (2)G → X is K -invariant.
Next note that since the action of G is strongly mixing, it follows
that K acts ergodically on ( (2)G, µ ).
But then the K -invariant function f : (2)G → X is µ-a.e. constant
and so f is µ-trivial, which is a contradiction!

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



Torsion-free abelian groups of finite rank

Definition
An additive subgroup G 6 Qn has rank n iff G contains n linearly
independent elements.

Definition
Let ∼=n denote the isomorphism relation on the standard Borel space
R(Qn) of torsion-free abelian groups of rank n.

Recall that if A, B ∈ R(Qn), then

A ∼= B iff ∃g ∈ GLn(Q) g(A) = B.

In other words, ∼=n is the orbit equivalence relation for the action of
GLn(Q) on the space R(Qn).
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Some History

In 1937, Baer gave a satisfactory classification of the rank 1
groups. (In fact, the isomorphism relation is hyperfinite.)
In 1938, Kurosh and Malcev independently gave an unsatisfactory
classification of the higher rank groups.

Problem (Fuchs 1973)
Characterize the torsion-free abelian groups of rank 2 by invariants.

Conjecture (Hjorth-Kechris 1996)
The isomorphism relation for the torsion-free abelian groups of rank 2
is countable universal.

In 1998, Hjorth proved that the classification problem for the rank
2 groups was strictly harder than that for the rank 1 groups.
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An application of Superrigidity

Theorem (Thomas 2000)
The complexity of the classification problems for the torsion-free
abelian groups of rank n increases strictly with the rank n.

Corollary
For each n ≥ 1, the isomorphism relation for the torsion-free abelian
groups of rank n is not countable universal.

A slightly embarrassing question
Is the isomorphism relation on the space of torsion-free abelian groups
of finite rank countable universal?

Theorem (Thomas 2006)
The isomorphism relation on the space of torsion-free abelian groups
of finite rank is not countable universal.
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E0-ergodicity

Definition
Let E, F be countable Borel equivalence relations on X, Y
and let µ be an E-invariant probability measure on X.
Then E is F-ergodic iff every Borel homomorphism f : X → Y
from E to F is µ-trivial.

Remark
Thus idR-ergodicity coincides with the usual ergodicity.
Clearly if E is F -ergodic and F ′ ≤B F , then E is also F ′-ergodic.
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E0-ergodicity

Theorem (Jones-Schmidt)
E is E0-ergodic iff E has no “nontrivial almost invariant subsets”.

Definition
Let E = EX

G be a countable Borel equivalence relation and let µ be an
E-invariant probability measure on X. Then E has nontrivial almost
invariant subsets iff there exists a sequence of Borel subsets

〈An ⊆ X | n ∈ N 〉

satisfying the following conditions:
µ(g · An 4 An) → 0 for all g ∈ G.
There exists δ > 0 such that δ < µ(An) < 1− δ for all n ∈ N.
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E0-ergodicity

Theorem (Jones-Schmidt)
Let G be a countable group and let H 6 G be a nonamenable
subgroup. Then the shift action of H on ( (2)G, µ ) is E0-ergodic.

Remark
The proof makes use of the associated unitary representation of H on
the Hilbert space L2( (2)G, µ ).

Remark
For later use, note that if E is E0-ergodic and F is hyperfinite, then E is
F -ergodic.
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The non-universality proof begins

Let S be a suitably chosen countable group and let
G = SL3(Z)× S.
Let E = EG be the orbit equivalence relation of the action
of G on ( (2)G, µ ).
Suppose that

f : (2)G →
⊔
n≥1

R(Qn)

is a Borel reduction from E to the isomorphism relation.
After deleting a nullset, we can suppose that

f : (2)G → R(Qn)

for some fixed n ≥ 1.
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The non-universality proof begins

At this point, we would like to define a corresponding Borel cocycle

α : G × (2)G → GLn(Q).

Then we could choose S to be a group which doesn’t embed into
GLn(Q) for all n.
Unfortunately GLn(Q) doesn’t act freely on R(Qn).
In fact, if B ∈ R(Qn), then the stabilizer of B in GLn(Q) is precisely
its automorphism group Aut(B).
What to do? Change the category!
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The quasi-equality relation

Definition
If A, B ∈ R(Qn), then A and B are said to be quasi-equal, written
A ≈n B, iff A ∩ B has finite index in both A and B.

Theorem (Thomas)
The quasi-equality relation ≈n is hyperfinite.

For each A ∈ R(Qn), let [A] be the ≈n-class containing A. We shall
consider the induced action of GLn(Q) on

X = {[A] | A ∈ R(Qn)}

of ≈n-classes. (Of course, X is not a standard Borel space.)
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Stabilizers of ≈n-classes

Definition
For each A ∈ R(Qn), the ring of quasi-endomorphisms is

QE(A) = {ϕ ∈ Matn(Q) | (∃m ≥ 1) mϕ ∈ End(A)}.

Clearly QE(A) is a Q-subalgebra of Matn(Q); and so there are only
countably many possibilities for QE(A).

Definition
QAut(A) is the group of units of the Q-algebra QE(A).

Lemma
If A ∈ R(Qn), then QAut(A) is the setwise stabilizer of [A] in GLn(Q).
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Defining the cocycle

For each x ∈ (2)G, let Ax = f (x) ∈ R(Qn).
After deleting a nullset and slightly adjusting f , we can suppose
that the setwise stabilizer of each [Ax ] is a fixed subgroup
L 6 GLn(Q).
Note that the quotient group H = NGLn(Q)(L)/L acts freely on the
corresponding set Y = {[A] | QAut(A) = L} of ≈n-classes.
Hence we can define a corresponding cocycle

α : G × (2)G → H

by setting

α(g, x) = the unique h ∈ H such that h · [Ax ] = [Ag·x ].

Simon Thomas (Rutgers University) Appalachian Set Theory Workshop 17th November 2007



A suitably chosen S

Let S be a countable simple nonamenable group which does not
embed into any of the countably many possibilities for H.
By Popa, after deleting a nullset and slightly adjusting f , we can
suppose that

α : G = SL3(Z)× S → H

is a homomorphism.
Since S 6 ker α, it follows that f : (2)G → R(Qn) is a Borel
homomorphism from the S-action on (2)G to the hyperfinite
quasi-equality ≈n-relation.
Since S is nonamenable, the S-action on (2)G is E0-ergodic
and hence µ-almost all x are mapped to a single ≈n-class,
which is a contradiction.
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