Countable Borel Equivalence Relations III

Simon Thomas

Rutgers University

17th November 2007

うく(?) 4 🗇 🕨 4 🖹 🕨

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

17th November 2007

The Fundamental Question

Let G be a countable group and let X be a standard Borel G-space. To what extent does the data (X, E_G^X) "remember" the group G and its action on X?

More accurately, to what extent does the data $(C, E_G^X \upharpoonright C)$ "remember" the group *G* and its action on *X*, where *C* is an arbitrary Borel complete section?

Further Hypotheses

We shall usually also assume that:

• *G* acts freely on *X*; i.e. $g \cdot x \neq x$ for all $1 \neq g \in G$ and $x \in X$.

• There exists a *G*-invariant probability measure μ on *X*.

Let G be a countable group and let X be a standard Borel G-space. Then the G-invariant probability measure μ is said to be ergodic iff $\mu(A) = 0, 1$ for every G-invariant Borel subset $A \subseteq X$.

Theorem

If μ is a G-invariant probability measure on the standard Borel G-space X, then the following statements are equivalent.

- The action of G on (X, μ) is ergodic.
- If Y is a standard Borel space and f : X → Y is a G-invariant Borel function, then there exists a G-invariant Borel subset M ⊆ X with µ(M) = 1 such that f ↾ M is a constant function.

The action of G on the standard probability space (X, μ) is strongly mixing iff for any Borel subsets A, $B \subseteq X$, we have that

$$\mu(g(A) \cap B) \to \mu(A) \cdot \mu(B) \quad \text{ as } g \to \infty.$$

In other words, if $\langle g_n \mid n \in \mathbb{N} \rangle$ is any sequence of distinct elements of *G*, then

$$\lim_{n\to\infty}\mu(g_n(A)\cap B)=\mu(A)\cdot\mu(B).$$

Observation

If $H \leq G$ is an infinite subgroup of G, then the action of H on (X, μ) is also strongly mixing.

Simon Thomas (Rutgers University)

Observation

If the action of G on (X, μ) is strongly mixing, then G acts ergodically on (X, μ) .

Proof.

If $A \subseteq X$ is a *G*-invariant Borel subset, then

$$\mu(A)^2 = \lim_{g \to \infty} \mu(g(A) \cap A) = \lim_{g \to \infty} \mu(A) = \mu(A).$$

Hence $\mu(A) = 0, 1$.

Remark

With more effort, it can be shown that for each $n \ge 2$, the diagonal action of *G* on (X^n, μ^n) is also ergodic.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

Theorem

The action of G on ($(2)^{G}$, μ) is strongly mixing.

- Consider the case when there exist finite subsets S, T ⊂ G and subsets F ⊆ 2^S, G ⊆ 2^T such that A = {f ∈ (2)^G | f ↾ S ∈ F} and B = {f ∈ (2)^G | f ↾ T ∈ G}.
- If $\langle g_n \mid n \in \mathbb{N} \rangle$ is a sequence of distinct elements of *G*, then

$$g_n(S) \cap T = \emptyset$$

for all but finitely many *n*.

• This means that $g_n(A)$, *B* are independent events and so

$$\mu(g_n(A) \cap B) = \mu(g_n(A)) \cdot \mu(B) = \mu(A) \cdot \mu(B).$$

Borel cocycles

- Let *G* be a countable group and let *X* be a standard Borel *G*-space with invariant ergodic probability measure μ.
- Suppose that the countable group H has a free Borel action on Y and that

$$f: X \to Y$$

is a Borel homomorphism between the corresponding orbit equivalence relations.

• Then we can define a Borel cocycle

$$\alpha: \boldsymbol{G} \times \boldsymbol{X} \to \boldsymbol{H}$$

by setting

 $\alpha(g, x) =$ the unique $h \in H$ such that $h \cdot f(x) = f(g \cdot x)$.

Note that

$$f(x) \xrightarrow{\alpha(g,x)} f(g \cdot x) \xrightarrow{\alpha(h,g \cdot x)} f(hg \cdot x)$$

and hence we have the identity:

$$\alpha(hg, x) = \alpha(h, g \cdot x)\alpha(g, x)$$
 µ-a.e x

• In particular, f is a permutation group homomorphism iff

$$\alpha(\boldsymbol{g},\boldsymbol{x}) = \alpha(\boldsymbol{g})$$

is a group homomorphism.

Cocycle equivalence

 $\beta(g,x) = b(g \cdot x) \alpha(g,x) b(x)^{-1}$ μ -a.e x

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ ৭ ে ৰ ⊒ ► ৰ ≣ ► 17th November 2007

Theorem (Popa)

Let Γ be a countably infinite Kazhdan group and let G be a countable group such that $\Gamma \trianglelefteq G$. If H is any countable group, then every Borel cocycle

$$lpha: \mathbf{G} imes (\mathbf{2})^{\mathbf{G}}
ightarrow \mathbf{H}$$

is equivalent to a group homomorphism of G into H.

Remarks

- For example, we let $\Gamma = SL_n(\mathbb{Z})$ for any $n \ge 3$.
- For example, we can let $G = \Gamma \times S$, where S is any countable group.

 E_G denotes the orbit equivalence relation of the Bernoulli action of the countable group on ((2)^G, μ).

Theorem

- Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H-space.

If there exists a μ -nontrivial Borel homomorphism from E_G to E_H^Y , then there exists a virtual embedding $\pi : G \to H$.

Simon Thomas (Rutgers University)

Proof of Theorem

- Suppose that *f* : (2)^G → Y is a μ-nontrivial Borel homomorphism from *E_G* to *E^Y_H*.
- Then we can define a Borel cocycle $\alpha : \mathbf{G} \times (\mathbf{2})^{\mathbf{G}} \rightarrow \mathbf{H}$ by

 $\alpha(g, x) =$ the unique $h \in H$ such that $h \cdot f(x) = f(g \cdot x)$.

 By Popa, after deleting a nullset and slightly adjusting *f*, we can suppose that α : G → H is a group homomorphism.

• Suppose that
$$K = \ker \alpha$$
 is infinite.

- First note that if $k \in K$, then $f(k \cdot x) = \alpha(k) \cdot f(x) = f(x)$ and so $f : (2)^G \to X$ is *K*-invariant.
- Next note that since the action of *G* is strongly mixing, it follows that *K* acts ergodically on ((2)^G, μ).
- But then the *K*-invariant function *f* : (2)^G → X is μ-a.e. constant and so *f* is μ-trivial, which is a contradiction!

An additive subgroup $G \leq \mathbb{Q}^n$ has rank n iff G contains n linearly independent elements.

Definition

Let \cong_n denote the isomorphism relation on the standard Borel space $R(\mathbb{Q}^n)$ of torsion-free abelian groups of rank n.

Recall that if $A, B \in R(\mathbb{Q}^n)$, then

$$A \cong B$$
 iff $\exists g \in GL_n(\mathbb{Q}) \quad g(A) = B$.

In other words, \cong_n is the orbit equivalence relation for the action of $GL_n(\mathbb{Q})$ on the space $R(\mathbb{Q}^n)$.

Some History

- In 1937, Baer gave a satisfactory classification of the rank 1 groups. (In fact, the isomorphism relation is hyperfinite.)
- In 1938, Kurosh and Malcev independently gave an unsatisfactory classification of the higher rank groups.

Problem (Fuchs 1973)

Characterize the torsion-free abelian groups of rank 2 by invariants.

Conjecture (Hjorth-Kechris 1996)

The isomorphism relation for the torsion-free abelian groups of rank 2 is countable universal.

 In 1998, Hjorth proved that the classification problem for the rank 2 groups was strictly harder than that for the rank 1 groups.

Simon Thomas (Rutgers University)

Theorem (Thomas 2000)

The complexity of the classification problems for the torsion-free abelian groups of rank n increases strictly with the rank n.

Corollary

For each $n \ge 1$, the isomorphism relation for the torsion-free abelian groups of rank n is not countable universal.

A slightly embarrassing question

Is the isomorphism relation on the space of torsion-free abelian groups of finite rank countable universal?

Theorem (Thomas 2006)

The isomorphism relation on the space of torsion-free abelian groups of finite rank is **not** countable universal.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

- Let E, F be countable Borel equivalence relations on X, Y and let μ be an E-invariant probability measure on X.
- Then E is F-ergodic iff every Borel homomorphism f : X → Y from E to F is μ-trivial.

Remark

- Thus $id_{\mathbb{R}}$ -ergodicity coincides with the usual ergodicity.
- Clearly if *E* is *F*-ergodic and $F' \leq_B F$, then *E* is also *F'*-ergodic.

Theorem (Jones-Schmidt)

E is E_0 -ergodic iff E has no "nontrivial almost invariant subsets".

Definition

Let $E = E_G^X$ be a countable Borel equivalence relation and let μ be an *E*-invariant probability measure on *X*. Then *E* has nontrivial almost invariant subsets iff there exists a sequence of Borel subsets

 $\langle A_n \subseteq X \mid n \in \mathbb{N} \rangle$

satisfying the following conditions:

- $\mu(g \cdot A_n \bigtriangleup A_n) \rightarrow 0$ for all $g \in G$.
- There exists $\delta > 0$ such that $\delta < \mu(A_n) < 1 \delta$ for all $n \in \mathbb{N}$.

Theorem (Jones-Schmidt)

Let G be a countable group and let $H \leq G$ be a nonamenable subgroup. Then the shift action of H on ($(2)^G$, μ) is E_0 -ergodic.

Remark

The proof makes use of the associated unitary representation of *H* on the Hilbert space $L^2((2)^G, \mu)$.

Remark

For later use, note that if *E* is E_0 -ergodic and *F* is hyperfinite, then *E* is *F*-ergodic.

The non-universality proof begins

- Let *S* be a suitably chosen countable group and let $G = SL_3(\mathbb{Z}) \times S$.
- Let *E* = *E_G* be the orbit equivalence relation of the action of *G* on ((2)^G, μ).
- Suppose that

$$f:(2)^G \to \bigsqcup_{n \ge 1} R(\mathbb{Q}^n)$$

is a Borel reduction from E to the isomorphism relation.

• After deleting a nullset, we can suppose that

$$f:(2)^G o R(\mathbb{Q}^n)$$

for some fixed $n \ge 1$.

• At this point, we would like to define a corresponding Borel cocycle

$$\alpha: \mathbf{G} \times (\mathbf{2})^{\mathbf{G}} \to \mathbf{GL}_{\mathbf{n}}(\mathbb{Q}).$$

- Then we could choose S to be a group which doesn't embed into GL_n(Q) for all n.
- Unfortunately $GL_n(\mathbb{Q})$ doesn't act freely on $R(\mathbb{Q}^n)$.
- In fact, if B ∈ R(Qⁿ), then the stabilizer of B in GL_n(Q) is precisely its automorphism group Aut(B).
- What to do? Change the category!

If $A, B \in R(\mathbb{Q}^n)$, then A and B are said to be quasi-equal, written $A \approx_n B$, iff $A \cap B$ has finite index in both A and B.

Theorem (Thomas)

The quasi-equality relation \approx_n is hyperfinite.

For each $A \in R(\mathbb{Q}^n)$, let [A] be the \approx_n -class containing A. We shall consider the induced action of $GL_n(\mathbb{Q})$ on

$$X = \{ [A] \mid A \in R(\mathbb{Q}^n) \}$$

of \approx_n -classes. (Of course, X is not a standard Borel space.)

For each $A \in R(\mathbb{Q}^n)$, the ring of quasi-endomorphisms is

 $\mathsf{QE}(A) = \{ \varphi \in \mathsf{Mat}_n(\mathbb{Q}) \mid (\exists m \ge 1) \ m\varphi \in \mathsf{End}(A) \}.$

Clearly QE(A) is a \mathbb{Q} -subalgebra of $Mat_n(\mathbb{Q})$; and so there are only countably many possibilities for QE(A).

Definition

QAut(A) is the group of units of the \mathbb{Q} -algebra QE(A).

Lemma

If $A \in R(\mathbb{Q}^n)$, then QAut(A) is the setwise stabilizer of [A] in $GL_n(\mathbb{Q})$.

Simon Thomas (Rutgers University)

∽ < <
 <

Defining the cocycle

- For each $x \in (2)^G$, let $A_x = f(x) \in R(\mathbb{Q}^n)$.
- After deleting a nullset and slightly adjusting *f*, we can suppose that the setwise stabilizer of each [*A_x*] is a fixed subgroup *L* ≤ *GL_n*(ℚ).
- Note that the quotient group H = N_{GLn(Q)}(L)/L acts freely on the corresponding set Y = {[A] | QAut(A) = L} of ≈_n-classes.
- Hence we can define a corresponding cocycle

$$\alpha: \boldsymbol{G} \times (\mathbf{2})^{\boldsymbol{G}} \rightarrow \boldsymbol{H}$$

by setting

 $\alpha(g, x) =$ the unique $h \in H$ such that $h \cdot [A_x] = [A_{g \cdot x}]$.

- Let *S* be a countable simple nonamenable group which does not embed into any of the countably many possibilities for *H*.
- By Popa, after deleting a nullset and slightly adjusting *f*, we can suppose that

$$\alpha: \boldsymbol{G} = \boldsymbol{SL}_3(\mathbb{Z}) \times \boldsymbol{S} \to \boldsymbol{H}$$

is a homomorphism.

- Since S ≤ ker α, it follows that f : (2)^G → R(Qⁿ) is a Borel homomorphism from the S-action on (2)^G to the hyperfinite quasi-equality ≈_n-relation.
- Since S is nonamenable, the S-action on (2)^G is E₀-ergodic and hence μ-almost all x are mapped to a single ≈_n-class, which is a contradiction.