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A quick recap

Theorem (Feldman-Moore)
If E is a countable Borel equivalence relation on the standard Borel
space X, then there exists a countable group G and a Borel action
of G on X such that E = EX

G .

Warning
The proof of the Feldman-Moore Theorem does not produce a
“canonical group action”.
It is sometimes difficult to express a countable Borel equivalence
relation as the orbit equivalence relation arising from a “natural
action." Cf. the Turing equivalence relation.
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Comparing orbit equivalence relations

Stating the obvious
If G, H are countable groups and X, Y are a standard Borel G-space,
H-space respectively, then the following are equivalent:

EX
G ≤B EY

H .
There exist a Borel map f : X → Y such that for all a, b ∈ X,

G · a = G · b ⇐⇒ H · f (a) = H · f (b).

The Fundamental Question
Does the complexity of EX

G reflect the structural complexity of the
group G?
To what extent does the data (X , EX

G ) “remember” G and
its action on X?
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An easy counterexample ...

For each countable group G, consider the Borel action of G
on G × [ 0, 1 ] defined by g · (h, r) = (gh, r).
Then the Borel map (h, r) 7→ (1G, r) selects a point in each
G-orbit, and so the corresponding orbit equivalence relation
is smooth.

Observation
If G acts freely on X and preserves a probability measure, then EX

G
isn’t smooth.

Definition
The Borel action of the countable group G on the standard Borel space
X is free iff g · x 6= x for all 1 6= g ∈ G and x ∈ X.
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Not so ad hoc

Theorem (Dougherty-Jackson-Kechris)
Let G be a countable group and let X be a standard Borel G-space. If
X does not admit a G-invariant probability measure, then for every
countable group H ⊇ G, there exists a Borel action of H on X such that
EX

H = EX
G .

Theorem
If E is a countable aperiodic Borel equivalence relation, then E can be
realised as the orbit equivalence relation of a faithful Borel action of
uncountably many countable groups.

Definition
A countable Borel equivalence relation E is aperiodic iff every E-class
is infinite.
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The obvious question

Question
Let E be a nonsmooth countable Borel equivalence relation. Does
there necessarily exist a countable group G with a free
measure-preserving Borel action on a standard probability space
(X , µ) such that E ∼B EX

G ?

Easy Observation
Suppose that E is a countable Borel equivalence relation on an
uncountable standard Borel space. Then there exists a countable
group G and a standard Borel G-space X such that:

G preserves a nonatomic probability measure µ on X .
E ∼B EX

G .
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Free actions

Definition
The Borel action of the countable group G on the standard Borel
space X is free iff g · x 6= x for all 1 6= g ∈ G and x ∈ X.
In this case, we say that X is a free standard Borel G-space.
The countable Borel equivalence relation E on X is free iff there
exists a countable group G with a free Borel action on X such
that EX

G = E.
The countable Borel equivalence relation E is essentially free iff
there exists a free countable Borel equivalence relation F such
that E ∼B F.

Question (Jackson-Kechris-Louveau)
Is every countable Borel equivalence relation essentially free?
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Some closure properties

Theorem (Jackson-Kechris-Louveau)
Let E, F be countable Borel equivalence relations on the standard
Borel spaces X, Y respectively.

If E ≤B F and F is essentially free, then so is E.
If E ⊆ F and F is essentially free, then so is E.

Corollary
The following statements are equivalent:

Every countable Borel equivalence relation is essentially free.
E∞ is essentially free.
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Essentially free countable Borel equivalence relations

Theorem (S.T. 2006)
The class of essentially free countable Borel equivalence relations
does not admit a universal element. In particular, E∞ is not
essentially free.

Corollary
≡T is not essentially free.

Proof.
Identifying the free group F2 with a suitably chosen group of recursive
permutations of N, we have that E∞ ⊆≡T .
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A map of the world

t

Essentially
Free

t E0

E∞

Turing
Equivalence
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Bernoulli actions

Let G be a countably infinite group and consider the shift action
on P(G) = 2G.
Then the usual product probability measure µ on 2G is G-invariant
and the free part of the action

P∗(G) = (2)G = {x ∈ 2G | g · x 6= x for all 1 6= g ∈ G}

has µ-measure 1.
Let EG be the corresponding orbit equivalence relation on (2)G.

Observation
If G 6 H, then EG ≤B EH .

Proof.
The inclusion map P∗(G) ↪→ P∗(H) is a Borel reduction from
EG to EH .
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Homomorphisms

Definition
Let E be a countable Borel equivalence relation on the standard
Borel space X with invariant probability measure µ.
Let F be a countable Borel equivalence relation on the standard
Borel space Y .
Then the Borel homomorphism f : X → Y from E to F is said to
be µ-trivial iff there exists a Borel subset Z ⊆ X with µ(Z ) = 1
such that f maps Z into a single F-class.

Definition
If G, H are countable groups, then the group homomorphism
π : G → H is a virtual embedding iff | ker π| < ∞.
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An easy consequence of Popa superrigidity

Theorem
Let G = SL3(Z)× S, where S is any countable group.
Let H be any countable group and let Y be a free standard
Borel H-space.

If there exists a µ-nontrivial Borel homomorphism from EG to EY
H , then

there exists a virtual embedding π : G → H.

Remark
In particular, the conclusion holds if there exists a Borel subset
Z ⊆ (2)G with µ(Z ) = 1 such that EG � Z ≤B EY

H .
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Essentially free countable Borel equivalence relations

Theorem
If E is an essentially free countable Borel equivalence relation, then
there exists a countable group G such that EG �B E.

Corollary
The class of essentially free countable Borel equivalence relations
does not admit a universal element. In particular, E∞ is not essentially
free.
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Proof of Theorem

We can suppose that E = EX
H is realised by a free Borel action

on X of the countable group H.
Let L be a finitely generated group which does not embed into H.
Let S = L ∗ Z and let G = SL3(Z)× S.
Then G has no finite normal subgroups and so there does not
exist a virtual embedding π : G → H.
Hence EG �B EX

H .
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Uncountably many free countable Borel equivalence
relations

Definition
For each prime p ∈ P, let Ap =

⊕∞
i=0 Cp, where Cp is the cyclic

group of order p.
For each subset S ⊆ P, let

GS = SL3(Z)×
⊕
p∈S

Ap.

Theorem
If S, T ⊆ P, then EGS

≤B EGT iff S ⊆ T .
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Ergodicity

Definition
Let G be a countable group and let X be a standard Borel G-space.
Then the G-invariant probability measure µ is said to be ergodic iff
µ(A) = 0, 1 for every G-invariant Borel subset A ⊆ X.

Example

Every countable group G acts ergodically on ( (2)G, µ ).

Theorem
If µ is a G-invariant probability measure on the standard Borel G-space
X, then the following statements are equivalent.

The action of G on (X , µ) is ergodic.
If Y is a standard Borel space and f : X → Y is a G-invariant
Borel function, then there exists a G-invariant Borel subset
M ⊆ X with µ(M) = 1 such that f � M is a constant function.
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Towards uncountably many non-essentially free
countable Borel equivalence relations

Definition
The countable groups G, H are virtually isomorphic iff there exist finite
normal subgroups N E G, M E H such that G/N ∼= H/M.

Lemma
There exists a Borel family {Sx | x ∈ 2N} of f.g. groups such that if
Gx = SL3(Z)× Sx , then the following conditions hold:

If x 6= y, then Gx and Gy are not virtually isomorphic.
If x 6= y, then Gx doesn’t virtually embed in Gy .

Definition
For each Borel subset A ⊆ 2N, let EA =

⊔
x∈A EGx .
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Not essentially free

Lemma
If the Borel subset A ⊆ 2N is uncountable, then EA is not essentially
free.

Proof.
Suppose that EA ≤B EY

H , where H is a countable group and Y is a
free standard Borel H-space.
Then for each x ∈ A, we have that EGx ≤B EY

H and so there exists
a virtual embedding πx : Gx → H.
Since A is uncountable and each Gx is finitely generated, there
exist x 6= y ∈ A such that πx [Gx ] = πy [Gy ].
But then Gx , Gy are virtually isomorphic, which is a contradiction.
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Uncountably many non-essentially free relations

Lemma
EA ≤B EB iff A ⊆ B.

Proof.
Suppose that EA ≤B EB.
Suppose also that A * B and that x ∈ A r B.
Then there exists a Borel reduction from EGx to EB

f : (2)Gx →
⊔
y∈B

(2)Gy .

By ergodicity, there exists µx -measure 1 subset of (2)Gx which
maps to a fixed (2)Gy .
This yields a µx -nontrivial Borel homomorphism from EGx to EGy

and so Gx virtually embeds into Gy , which is a contradiction.
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