Countable Borel Equivalence Relations II

Simon Thomas

Rutgers University

17th November 2007

うく (? + 日 + + 三 +

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

17th November 2007

Theorem (Feldman-Moore)

If *E* is a countable Borel equivalence relation on the standard Borel space *X*, then there exists a countable group *G* and a Borel action of *G* on *X* such that $E = E_G^X$.

Warning

- The proof of the Feldman-Moore Theorem does not produce a "canonical group action".
- It is sometimes difficult to express a countable Borel equivalence relation as the orbit equivalence relation arising from a "natural action." Cf. the Turing equivalence relation.

Stating the obvious

If G, H are countable groups and X, Y are a standard Borel G-space, H-space respectively, then the following are equivalent:

- $E_G^X \leq_B E_H^Y$.
- There exist a Borel map $f : X \to Y$ such that for all $a, b \in X$,

$$G \cdot a = G \cdot b \iff H \cdot f(a) = H \cdot f(b).$$

The Fundamental Question

• Does the complexity of E_G^X reflect the structural complexity of the group G?

• To what extent does the data (*X*, *E*^{*X*}_{*G*}) "remember" *G* and its action on *X*?

17th November 2007

 $\mathcal{O} \land \mathcal{O} \land \mathcal{P} \:$

An easy counterexample ...

- For each countable group G, consider the Borel action of G on G × [0, 1] defined by g · (h, r) = (gh, r).
- Then the Borel map (*h*, *r*) → (1_G, *r*) selects a point in each G-orbit, and so the corresponding orbit equivalence relation is smooth.

Observation

If G acts freely on X and preserves a probability measure, then E_G^X isn't smooth.

Definition

The Borel action of the countable group G on the standard Borel space X is free iff $g \cdot x \neq x$ for all $1 \neq g \in G$ and $x \in X$.

Simon Thomas (Rutgers University)

Theorem (Dougherty-Jackson-Kechris)

Let G be a countable group and let X be a standard Borel G-space. If X does not admit a G-invariant probability measure, then for every countable group $H \supseteq G$, there exists a Borel action of H on X such that $E_H^X = E_G^X$.

Theorem

If E is a countable aperiodic Borel equivalence relation, then E can be realised as the orbit equivalence relation of a faithful Borel action of uncountably many countable groups.

Definition

A countable Borel equivalence relation E is aperiodic iff every E-class is infinite.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ ৭ ে ৰ 🗇 ৮ ৰ 🖹 । 17th November 2007

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that $E \sim_B E_G^X$?

Easy Observation

Suppose that E is a countable Borel equivalence relation on an uncountable standard Borel space. Then there exists a countable group G and a standard Borel G-space X such that:

- *G* preserves a nonatomic probability measure μ on *X*.
- $E \sim_B E_G^X$.

Definition

- The Borel action of the countable group G on the standard Borel space X is free iff g · x ≠ x for all 1 ≠ g ∈ G and x ∈ X. In this case, we say that X is a free standard Borel G-space.
- The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that $E_G^X = E$.
- The countable Borel equivalence relation E is essentially free iff there exists a free countable Borel equivalence relation F such that E ∼_B F.

Question (Jackson-Kechris-Louveau)

Is every countable Borel equivalence relation essentially free?

Simon Thomas (Rutgers University)

Theorem (Jackson-Kechris-Louveau)

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_B F$ and F is essentially free, then so is E.
- If $E \subseteq F$ and F is essentially free, then so is E.

Corollary

The following statements are equivalent:

- Every countable Borel equivalence relation is essentially free.
- E_{∞} is essentially free.

Theorem (S.T. 2006)

The class of essentially free countable Borel equivalence relations does not admit a universal element. In particular, E_{∞} is not essentially free.

Corollary

 \equiv_T is not essentially free.

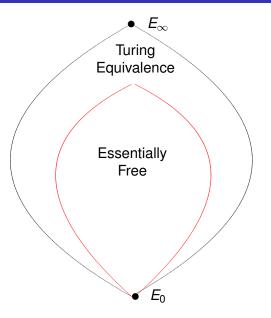
Proof.

Identifying the free group \mathbb{F}_2 with a suitably chosen group of recursive permutations of \mathbb{N} , we have that $E_{\infty} \subseteq \equiv_{\mathcal{T}}$.

Simon Thomas (Rutgers University)

∽ ৭ ়ে ৰ @ ► ৰ ≣ ► 17th November 2007

A map of the world



Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ <
 ↔ <

Bernoulli actions

- Let *G* be a countably infinite group and consider the shift action on $\mathcal{P}(G) = 2^{G}$.
- Then the usual product probability measure μ on 2^G is G-invariant and the free part of the action

$$\mathcal{P}^*(G) = (2)^G = \{x \in 2^G \mid g \cdot x \neq x \text{ for all } 1 \neq g \in G\}$$

has μ -measure 1.

• Let E_G be the corresponding orbit equivalence relation on $(2)^G$.

Observation

If $G \leq H$, then $E_G \leq_B E_H$.

Proof.

The inclusion map $\mathcal{P}^*(G) \hookrightarrow \mathcal{P}^*(H)$ is a Borel reduction from E_G to E_H .

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

17th November 2007

Definition

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.
- Then the Borel homomorphism f : X → Y from E to F is said to be μ-trivial iff there exists a Borel subset Z ⊆ X with μ(Z) = 1 such that f maps Z into a single F-class.

Definition

If G, H are countable groups, then the group homomorphism $\pi : G \to H$ is a virtual embedding iff $|\ker \pi| < \infty$.

Theorem

- Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H-space.

If there exists a μ -nontrivial Borel homomorphism from E_G to E_H^Y , then there exists a virtual embedding $\pi : G \to H$.

Remark

In particular, the conclusion holds if there exists a Borel subset $Z \subseteq (2)^G$ with $\mu(Z) = 1$ such that $E_G \upharpoonright Z \leq_B E_H^Y$.

Simon Thomas (Rutgers University)

∽ < <
 <

Theorem

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

Corollary

The class of essentially free countable Borel equivalence relations does not admit a universal element. In particular, E_{∞} is not essentially free.

Simon Thomas (Rutgers University)

Appalachian Set Theory Workshop

∽ < <
 <

- We can suppose that $E = E_H^X$ is realised by a free Borel action on *X* of the countable group *H*.
- Let *L* be a finitely generated group which does not embed into *H*.
- Let $S = L * \mathbb{Z}$ and let $G = SL_3(\mathbb{Z}) \times S$.
- Then G has no finite normal subgroups and so there does not exist a virtual embedding π : G → H.
- Hence $E_G \not\leq_B E_H^X$.

Uncountably many free countable Borel equivalence relations

Definition

- For each prime p ∈ P, let A_p = ⊕[∞]_{i=0} C_p, where C_p is the cyclic group of order p.
- For each subset $S \subseteq \mathbb{P}$, let

$$G_{\mathcal{S}} = SL_3(\mathbb{Z}) imes igoplus_{
ho \in \mathcal{S}} A_{
ho}.$$

Theorem

If
$$S, T \subseteq \mathbb{P}$$
, then $E_{G_S} \leq_B E_{G_T}$ iff $S \subseteq T$.

Simon Thomas (Rutgers University)

Ergodicity

Definition

Let G be a countable group and let X be a standard Borel G-space. Then the G-invariant probability measure μ is said to be ergodic iff $\mu(A) = 0, 1$ for every G-invariant Borel subset $A \subseteq X$.

Example

Every countable group *G* acts ergodically on ((2)^{*G*}, μ).

Theorem

If μ is a G-invariant probability measure on the standard Borel G-space X, then the following statements are equivalent.

- The action of G on (X, μ) is ergodic.
- If Y is a standard Borel space and f : X → Y is a G-invariant Borel function, then there exists a G-invariant Borel subset M ⊆ X with µ(M) = 1 such that f ↾ M is a constant function.

Towards uncountably many non-essentially free countable Borel equivalence relations

Definition

The countable groups G, H are virtually isomorphic iff there exist finite normal subgroups $N \trianglelefteq G$, $M \trianglelefteq H$ such that $G/N \cong H/M$.

Lemma

There exists a Borel family $\{S_x \mid x \in 2^{\mathbb{N}}\}$ of f.g. groups such that if $G_x = SL_3(\mathbb{Z}) \times S_x$, then the following conditions hold:

- If $x \neq y$, then G_x and G_y are not virtually isomorphic.
- If $x \neq y$, then G_x doesn't virtually embed in G_y .

Definition

For each Borel subset $A \subseteq 2^{\mathbb{N}}$, let $E_A = \bigsqcup_{x \in A} E_{G_x}$.

Simon Thomas (Rutgers University)

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_A is not essentially free.

Proof.

- Suppose that $E_A \leq_B E_H^Y$, where *H* is a countable group and *Y* is a free standard Borel *H*-space.
- Then for each $x \in A$, we have that $E_{G_x} \leq_B E_H^{\gamma}$ and so there exists a virtual embedding $\pi_x : G_x \to H$.
- Since A is uncountable and each G_x is finitely generated, there exist x ≠ y ∈ A such that π_x[G_x] = π_y[G_y].
- But then G_x , G_y are virtually isomorphic, which is a contradiction.

Uncountably many non-essentially free relations

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

Proof.

- Suppose that $E_A \leq_B E_B$.
- Suppose also that $A \nsubseteq B$ and that $x \in A \setminus B$.
- Then there exists a Borel reduction from E_{G_x} to E_B

$$f:(2)^{G_x} \rightarrow \bigsqcup_{y \in B} (2)^{G_y}.$$

- By ergodicity, there exists μ_x-measure 1 subset of (2)^{G_x} which maps to a fixed (2)^{G_y}.
- This yields a μ_x-nontrivial Borel homomorphism from E_{G_x} to E_{G_y} and so G_x virtually embeds into G_y, which is a contradiction.