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Introduction. These notes are based upon a day-long lecture workshop presented by Simon

Thomas at the University of Ohio at Athens on November 17, 2007. The workshop served

as an intensive introduction to the emerging theory of countable Borel equivalence relations.

These notes are an updated and slightly expanded version of an earlier draft which was

compiled from the lecture slides by Scott Schneider.

1. First Session

1.1. Standard Borel Spaces and Borel Equivalence Relations. A topological space is

said to be Polish if it admits a complete, separable metric. If B is a σ-algebra of subsets of

a given set X, then the pair (X,B) is called a standard Borel space if there exists a Polish

topology T on X that generates B as its Borel σ-algebra; in which case, we write B = B(T ).

For example, each of the sets R, [0, 1], NN, and 2N = P(N) is Polish in its natural topology,

and so may be viewed, equipped with its corresponding Borel structure, as a standard Borel

space.

The abstraction involved in passing from a topology to its associated Borel structure is

analagous to that of passing from a metric to its induced topology. Just as distinct metrics on

a space may induce the same topology, distinct topologies may very well generate the same

Borel σ-algebra. In a standard Borel space, then, one “remembers” only the Borel sets, and

forgets which of them were open; it is natural therefore to imagine that any of them might

have been, and indeed this is the case:

Theorem 1.1.1. Let (X, T ) be a Polish space and Y ⊆ X any Borel subset. Then there

exists a Polish topology TY ⊇ T such that B(TY ) = B(T ) and Y is clopen in (X, TY ).

It follows that if (X,B) is a standard Borel space and Y ∈ B, then (Y,B � Y ) is also a

standard Borel space. In fact, so much structural information is “forgotten” in passing from

a Polish space to its Borel structure that we obtain the following theorem of Kuratowski [22].
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Theorem 1.1.2. There exists a unique uncountable standard Borel space up to isomorphism.

It turns out that many classification problems from diverse areas of mathematics may be

viewed as definable equivalence relations on standard Borel spaces. For example, consider

the problem of classifying all countable graphs up to graph isomorphism. Let C be the set

of graphs of the form Γ = 〈N, E〉. Then identifying each graph Γ ∈ C with its edge relation

E ∈ 2N2
, one easily checks that C is a Borel subset of 2N2

and hence is a standard Borel space.

Moreover, the isomorphism relation on C is simply the orbit equivalence relation arising from

the natural action of Sym(N) on C. More generally, if σ is a sentence of Lω1,ω, then

Mod(σ) = {M = 〈N, · · · 〉 | M |= σ }

is a standard Borel space, and the isomorphism relation on Mod(σ) is the orbit equivalence

relation arising from the natural Sym(N)-action. However, while the isomorphism relation

on Mod(σ) is always an analytic subset of Mod(σ) × Mod(σ), it is not in general a Borel

subset; for example, the graph isomorphism relation on C is not Borel. On the other hand,

the restriction of graph isomorphism to the standard Borel space of connected locally finite

graphs is Borel; and more generally, the isomorphism relation on a standard Borel space of

countable structures will be Borel if each structure is “finitely generated” in some broad sense.

With these examples in mind, we make the following definitions.

Definition 1.1.3. If X is a standard Borel space, then a Borel equivalence relation on X is

an equivalence relation E ⊆ X2 which is a Borel subset of X2.

Definition 1.1.4. If G is a Polish group, then a standard Borel G-space is a standard Borel

space X equipped with a Borel G-action (g, x) 7→ g ·x. The corresponding G-orbit equivalence

relation is denoted by EX
G .

We observe that if G is a countable group and X is a standard Borel G-space, then EX
G

is a Borel equivalence relation. As further examples, we will next consider the standard

Borel space R(Qn) of torsion-free abelian groups of rank n and the Polish space G of finitely

generated groups.

For each n ≥ 1, let Qn =
⊕

1≤i≤n

Q. Then the standard Borel space of torsion-free abelian

groups of rank n is defined to be

R(Qn) = {A ≤ Qn | A contains a basis of Qn}.
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Notice that if A,B ∈ R(Qn), then we have that

A ∼= B iff there exists ϕ ∈ GLn(Q) such that ϕ(A) = B,

and hence the isomorphism relation on R(Qn) is the Borel equivalence relation arising from

the natural action of GLn(Qn) on R(Qn).

As a step towards defining the Polish space G of finitely generated groups, for each m ∈ N,

let Fm be the free group on the m generators {x1, . . . , xm} and let 2F2 be the compact space

of all functions ϕ : F2 → 2. Then, identifying each subset S ⊆ Fm with its characteristic

function χS ∈ 2F2 , it is easily checked that the collection Gm of normal subgroups of Fm is a

closed subset of 2F2 . In particular, Gm is a compact Polish space. Next, as each m-generator

group can be realized as a quotient Fm/N for some N ∈ Gm, we can identify Gm with the

space of m-generator groups. Finally, there exists a natural embedding Gm ↪→ Gm+1 defined

by

N 7→ the normal closure of N ∪ {xm+1 } in Fm+1;

and so we can define the space of finitely generated groups by G =
⋃

m≥1 Gm.

By a theorem of Tietze, if N,M ∈ Gm, then Fm/N ∼= Fm/M if and only if there exists

π ∈ Aut(F2m) such that π(N) = M .1 In particular, it follows that the isomorphism relation

∼= on the space G of finitely generated groups is the orbit equivalence relation arising from

the action of the countable group Autf (F∞) of finitary automorphisms of the free group F∞
on {x1, x2, · · · , xm, · · · }. (For more details, see either Champetier [6] or Thomas [35].)

1.2. Borel Reducibility. We have seen that many naturally occurring classification prob-

lems may be viewed as Borel equivalence relations on standard Borel spaces. In particular, the

complexity of the problem of finding complete invariants for such classification problems can

be measured to some extent by the “structural complexity” of the associated Borel equivalence

relations. Here the crucial notion of comparison is that of a Borel reduction.

Definition 1.2.1. If E and F are Borel equivalence relations on the standard Borel spaces

X, Y respectively, then we say that E is Borel reducible to F , and write E ≤B F , if there

exists a Borel map f : X → Y such that xEy ↔ f(x)Ff(y). Such a map is called a Borel

1It is probably worth pointing out that this is not a misprint. For example, by Dunwoody-Pietrowski [9],

there exist normal subgroups N , M 6 F2 with F2/N ∼= F2/M such that θ(N) 6= M for all θ ∈ Aut(F2).

However, if we identify N , M with the corresponding normal subgroups of F4 via the natural embedding

G2 ↪→ G3 ↪→ G4, then there exists π ∈ Aut(F4) such that π(N) = M .



4 SIMON THOMAS AND SCOTT SCHNEIDER

reduction from E to F . We say that E and F are Borel bireducible, and write E ∼B F , if

both E ≤B F and F ≤B E; and we write E <B F if both E ≤B F and F 6≤B E.

If E and F are Borel equivalence relations, then we interpret E ≤B F to mean that the

classification problem associated with E is at most as complicated as that associated with

F , in the sense that an assignment of complete invariants for F would, via composition with

the Borel reduction from E to F , yield one for E as well. Additionally we observe that if

f : E ≤B F , then the induced map f̃ : X/E → Y/F is an embedding of quotient spaces, the

existence of which is sometimes interpreted as saying that X/E has “Borel cardinality” less

than or equal to that of Y/F .

This notion of Borel reducibility imposes a partial (pre)-order on the collection of Borel

equivalence relations, and much of the work currently taking place in the theory of Borel

equivalence relations concerns determining the structure of this partial ordering. For a long

time, many questions about this structure remained open, and it was notoriously difficult

to obtain non-reducibility results. More recently, however, some progress has been made in

establishing benchmarks within the ≤B-hierarchy. In particular, an important breakthrough

occurred in 2000 when Adams-Kechris [2] proved that the partial ordering of Borel subsets of

2N under inclusion embeds into the ≤B ordering on the subclass of countable Borel equivalence

relations, which we shall define shortly.

As a first step towards describing the ≤B-hierarchy, we introduce the so-called smooth

and hyperfinite Borel equivalence relations. Writing idR for the identity relation on R, the

following result is a special case of a more general result of Silver [30] concerning co-analytic

equivalence relations.

Theorem 1.2.2 (Silver). If E is a Borel equivalence relation with uncountably many classes,

then idR ≤B E.

Hence idR – and any Borel equivalence relation bireducible with it – is a ≤B-minimal

element in the partial ordering of Borel equivalence relations with uncountably many classes.

Definition 1.2.3. The Borel equivalence relation E is smooth iff E ≤B idZ for some (equiv-

alently every) uncountable standard Borel space Z.

For example, it is easily checked that if the Borel equivalence relation E on the standard

Borel space X admits a Borel tranversal, then E is smooth. (Here a Borel transversal is a
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Borel subset T ⊆ X which intersects every E-class in a single point.) While the converse does

not hold for arbitrary Borel equivalence relations, we will later see that a countable Borel

equivalence relation E is smooth iff E admits a Borel transversal.

The isomorphism relation on the space of countable divisible abelian groups is an example

of a smooth equivalence relation. Similarly, if ≡ is the equivalence relation defined on the

space G of finitely generated groups by G ≡ H iff Th(G) = Th(H), then ≡ is also smooth.

For an example of a non-smooth Borel equivalence relation, we turn to the following:

Definition 1.2.4. E0 is the Borel equivalence relation defined on 2N by xE0y iff x(n) = y(n)

for all but finitely many n.

To see that E0 is not smooth, suppose f : 2N → [0, 1] is a Borel reduction from E0

to id[0,1] and let µ be the usual product probability measure on 2N. Then f−1([0, 1
2 ]) and

f−1([ 12 , 1]) are Borel tail events, so by Kolmogorov’s zero-one law, either µ(f−1([0, 1
2 ])) = 1

or µ(f−1([ 12 , 1])) = 1. Continuing to cut intervals in half in this manner, we obtain that f is

µ-a.e. constant, a contradiction.

1.3. Countable Borel Equivalence Relations. An important subclass of Borel equiva-

lence relations consists of those with countable equivalence classes.

Definition 1.3.1. A Borel equivalence relation on a standard Borel space is called countable

if each of its equivalence classes is countable.

The importance of this subclass stems in large part from the fact that each such equivalence

relation can be realized as the orbit equivalence relation of a Borel action of a countable group.

Of course, if G is a countable group and X a standard Borel G-space, then the corresponding

orbit equivalence relation EX
G is a countable Borel equivalence relation. But by a remarkable

result of Feldman-Moore [10], the converse is also true:

Theorem 1.3.2 (Feldman-Moore). If E is a countable Borel equivalence relation on the

standard Borel space X, then there exists a countable group G and a Borel action of G on X

such that E = EX
G .

Sketch of Proof. (For more details, see Srivastava [32, 5.8.13]). Let E be a countable Borel

equivalence relation on the standard Borel space X. Since E ⊆ X2 has countable sections, the

Lusin-Novikov Uniformization Theorem [21, 18.10] implies that we can write E as a countable
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union of graphs of injective partial Borel functions, fn : dom fn → X. Each fn is easily

modified into a Borel bijection gn : X → X with the same “orbits.” But then E is simply the

orbit equivalence relation arising from the resulting Borel action of the group G generated by

{ gn | n ∈ N }. �

Remark 1.3.3. The Lusin-Novikov Uniformization Theorem also implies that if E is a

smooth countable Borel equivalence relation on the standard Borel space X, then E ad-

mits a Borel transversal. To see this, notice that if f : X → R is a Borel reduction from E to

idR, then f is countable-to-one. Applying the Lusin-Novikov Uniformization Theorem to the

Borel relation R = { (f(x), x) | x ∈ X }, it follows that f(X) is Borel and that there exists

an injective Borel function g : f(X) → X such that f(g(y)) = y for all y ∈ f(X). Hence

T = g(f(X)) is a Borel transversal for E.

Unfortunately, the countable group action given by the Feldman-Moore theorem is by no

means canonical. For example, let us define the Turing equivalence relation ≡T on P(N) by

A ≡T B iff A ≤T B and B ≤T A,

where ≤T denotes Turing reducibility. Then ≡T is clearly a countable Borel equivalence

relation; and hence by the Feldman-Moore theorem, it must arise as the orbit equivalence

relation induced by a Borel action of some countable group G on P(N). However, the proof of

the Feldman-Moore theorem gives us no information about either the group G or its action,

and so it is reasonable to ask:

Vague Question 1.3.4. Can ≡T be realized as the orbit equivalence relation of a “nice”

Borel action of some countable group?

We have earlier seen that there is a ≤B-minimal Borel equivalence relation on an uncount-

able standard Borel space. On the other hand, by Friedman-Stanley [11], there does not

exist a maximal relation in the setting of arbitrary Borel equivalence relations. However,

by Dougherty-Jackson-Kechris [7], the subclass of countable Borel equivalence relations does

admit a universal element.

Definition 1.3.5. A countable Borel equivalence relation E is universal iff F ≤B E for every

countable Borel equivalence relation F .
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This universal countable Borel equivalence relation can be realized as follows. Let Fω be

the free group on infinitely many generators and define a Borel action of Fω on

(2N)Fω = {p | p : Fω → 2N}

by setting

(g · p)(h) = p(g−1h), p ∈ (2N)Fω .

Let Eω be the resulting orbit equivalence relation.

Claim 1.3.6. Eω is a universal countable Borel equivalence relation.

Proof. Let X be a standard Borel space and let E be any countable Borel equivalence relation

on X. Since every countable group is a homomorphic image of Fω, the Feldman-Moore

theorem implies that E is the orbit equivalence relation of a Borel action of Fω. Let {Ui}i∈N

be a sequence of Borel subsets of X which separates points and define f : X → (2N)Fω by

x 7→ fx, where

fx(h)(i) = 1 iff x ∈ h(Ui).

Then f is injective and

(g · fx)(h)(i) = 1 iff fx(g−1h)(i) = 1

iff x ∈ g−1h(Ui)

iff g · x ∈ h(Ui)

iff fg·x(h)(i) = 1

�

Dougherty-Jackson-Kechris [7] have also shown that the orbit equivalence relation E∞

arising from the translation action of the free group F2 on its powerset is a universal countable

Borel equivalence relation. (Of course, any two universal countable Borel equivalence relations

are Borel bireducible.)

We have now seen that within the class of countable Borel equivalence relations, there exist

≤B-least and ≤B-greatest such relations, up to ∼B , with realizations given by idR and E∞,

respectively. It turns out that the minimal idR has an immediate ≤B-successor:

Theorem 1.3.7 (Harrington-Kechris-Louveau [14]). If E is a nonsmooth Borel equivalence

relation, then E0 ≤B E.



8 SIMON THOMAS AND SCOTT SCHNEIDER

A Borel equivalence relation E is said to be hyperfinite if it can be written as an increasing

union E = ∪nFn of a sequence of finite Borel equivalence relations. (Here a Borel equivalence

relation F is said to be finite if every F -class is finite.) It is easily shown that E0 is hyper-

finite; and in fact, every nonsmooth hyperfinite countable Borel equivalence relation is Borel

bireducible with E0. Furthermore, by a result of Dougherty-Jackson-Kechris [7], if E is a

countable Borel equivalence relation, then E can be realized as the orbit equivalence relation

of a Borel Z-action if and only if E ≤B E0. (There will be a further discussion of the class

of hyperfinite equivalence relations in Subsection 4.5.1.) Finally, by the previously mentioned

result of Adams-Kechris [2], we know that there exist 2ℵ0 distinct countable Borel equivalence

relations up to Borel bireducibility. Combining these basic facts gives the following picture of

the universe of countable Borel equivalence relations.

x
xE0 = hyperfinite

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Given this picture, one can ask where a particular countable Borel equivalence relation lies

relative to the known benchmarks. In the following section, we shall consider this question for

the Turing equivalence relation ≡T . Here it is interesting to note that Martin has conjectured

that ≡T is not universal, while Kechris has conjectured that it is. However, despite some

progress, which we will discuss below, this important problem remains open.

1.4. Turing Equivalence and The Martin Conjectures. We first define the set of Turing

degrees to be the collection

D = {a = [A]≡T
| A ∈ P(N)}
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of ≡T -classes. A subset X ⊆ D is said to be Borel iff X∗ =
⋃
{a | a ∈ X} is a Borel subset of

P(N). It is well-known that if E is a countable Borel equivalence relation on a standard Borel

space X, then the quotient Borel space X/E = { [x]E | x ∈ X } is a standard Borel space if

and only if E is smooth. (If X/E is a standard Borel space, then the map x 7→ [x]E witnesses

that E is smooth. Conversely, if E is smooth, then E admits a Borel transversal T and X/E

is isomorphic to the standard Borel space T .) In particular, since ≡T is not smooth, it follows

that D is not a standard Borel space.

For a,b ∈ D, we define a ≤ b iff A ≤T B for each A ∈ a and B ∈ b; and for each a ∈ D,

we define the corresponding cone to be Ca = {b ∈ D | a ≤ b}. Of course, each cone Ca is a

Borel subset of D.

Theorem 1.4.1 (Martin). If X ⊆ D is Borel, then for some a ∈ D, either Ca ⊆ X or

Ca ⊆ D \X.

Proof. Let X ⊆ D be Borel and consider the 2-player game G(X∗)

a = a(0)a(1)a(2) · · · , where each a(n) ∈ 2,

such that Player 1 wins iff a ∈ X∗. Then G(X∗) is Borel and hence is determined. Suppose,

for example, that ϕ : 2<N → 2 is a winning strategy for Player 1. We claim that Cϕ ⊆ X.

To see this, suppose that ϕ ≤T x and let Player 2 play x = a(1)a(3)a(5) · · · . Then

y = ϕ(x) ∈ X∗ and x ≡T y. It follows that x ∈ X∗. �

For later use, notice that if X ⊆ D is Borel, then X contains a cone iff X is ≤T -cofinal in

the set D of Turing degrees.

In a similar fashion, we define a function f : D → D to be Borel iff there exists a Borel

function ϕ : P(N) → P(N) such that f([A]≡T
) = [ϕ(A)]≡T

. We are now ready to state the

following conjecture of Martin, which (as we will soon see) implies that ≡T is not universal.

Conjecture 1.4.2 (Martin). If f : D → D is Borel, then either f is constant on a cone or

else f(a) ≥ a on a cone.

While this conjecture remains open, there do exist some partial results of Slaman-Steel [31]

that point in its direction:

Theorem 1.4.3 (Slaman-Steel). If f : D → D is Borel and f(a) < a on a cone, then f is

constant on a cone.
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Theorem 1.4.4 (Slaman-Steel). If the Borel map f : D → D is uniformly invariant, then

either f is constant on a cone or else f(a) ≥ a on a cone.

(The definition of a uniformly invariant map can be found in Slaman-Steel [31].) Next,

following Dougherty-Kechris [8], we will show that the Martin conjecture implies that ≡T

is not universal. First recall that, by Dougherty-Jackson-Kechris [7], if E, F are countable

Borel equivalence relations on the standard Borel spaces X, Y respectively, then E ∼B F iff

there exist Borel complete sections A ⊆ X, B ⊆ Y such that E � A ∼= F � B via a Borel

isomorphism. (Here a Borel subset A ⊆ X is said to be a complete section if A intersects every

E-class.) In particular, if ≡T is universal, then (≡T × ≡T ) ∼B ≡T ; and hence there exist

Borel complete sections Y ⊆ P(N)×P(N) and Z ⊆ P(N) such that (≡T × ≡T ) � Y ∼= ≡T � Z

via a Borel isomorphism ϕ. Let f : D ×D → D be the Borel pairing function induced by ϕ.

Then fixing d0 6= d1 ∈ D, we can define Borel maps fi : D → D by fi(a) = f(di,a). By the

Martin Conjecture, fi(a) ≥ a on a cone and so each ran fi is a cofinal Borel subset of D. But

this means that each ran fi contains a cone, which is impossible since ran f0 ∩ ran f1 = ∅.

In constrast, let ≡A be the arithmetic equivalence relation defined on P(N) by

B ≡A C iff B ≤A C and C ≤A B,

where ≤ A denotes arithmetic reducibility. Then Slaman-Steel have shown that ≡A is a

universal countable Borel equivalence relation. One might take this as evidence that ≡T is

also universal. However, as Slaman has pointed out, an important difference between the two

cases is that the arithmetic degrees have less closure with respect to arithmetic equivalences

than the Turing degrees do with respect to recursive equivalences.

2. Second Session

2.1. The Fundamental Question in the Theory of Countable Borel Equivalence Re-

lations. We have already seen that, by the Feldman-Moore theorem, every countable Borel

equivalence relation on a standard Borel space arises as the orbit equivalence relation of a

Borel action of a suitable countable group. However, we have also seen that this action is not

canonically determined, and that it is sometimes difficult to express a given countable Borel

equivalence relation as the orbit equivalence relation arising from a “natural” group action.

Since many of the techniques currently available for analyzing countable Borel equivalence

relations involve properties of the groups and actions from which they arise, one of the fun-

damental questions in the theory concerns the extent to which an orbit equivalence relation
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EX
G determines the group G and its action on X. Ideally one would hope for the complexity

of EX
G to reflect the complexity of G, so that relations EX

G and EX
H can be distinguished (in

the sense of ≤B) by distinguishing G from H.

Of course, strong hypotheses on a countably infinite group G and its action on a standard

Borel space X must be made if there is to be any hope of recovering G and its action from EX
G .

For example, let G be any countable group and consider the Borel action of G on G × [0, 1]

defined by g · (h, r) = (gh, r). Then the Borel map (h, r) 7→ (1G, r) selects a point in each

G-orbit, and so the corresponding orbit equivalence relation is smooth. Notice, however, that

this action does not admit an invariant probability measure. In fact, we have the following

simple but important observation.

Definition 2.1.1. A Borel action of a countable group G on a standard Borel space X is

said to be free iff g · x 6= x for all 1 6= g ∈ G and x ∈ X. In this case, we say that X is a free

standard Borel G-space.

Proposition 2.1.2. If a countably infinite group G acts freely on X and preserves a proba-

bility measure µ, then EX
G is not smooth.

Proof. If E is smooth, then E admits a Borel transversal T ⊆ X. But since G acts freely, it

follows that X can be expressed as the disjoint union X =
⊔

g∈G g(T ), which means that T

is not µ-measurable. �

The following two theorems show that if we are serious about recovering the group G and

its action from EX
G , then it is necessary to assume that G satisfies both of the hypotheses of

Proposition 2.1.2

Theorem 2.1.3 (Dougherty-Jackson-Kechris [7]). Let G be a countable group and let X be

a standard Borel G-space. If X does not admit a G-invariant probability measure, then for

every countable group H ⊃ G, there exists a Borel action of H on X such that EX
H = EX

G .

Furthermore, if G acts freely on X, then there exists a free Borel action of H on X such that

EX
H = EX

G .

In order to see that it is also necessary to assume that the action of G on X is free,

consider the associated homomorphism π : G → Sym(X). Of course, if kerπ 6= 1, then we

cannot recover G from its action on X. Thus it is certainly necessary to assume that G acts

faithfully on X. Following Miller [27], the action of G on X is said to be everywhere faithful
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if G acts faithfully on every G-orbit. The following is an easy consequence of a much more

general result of Miller [27].

Theorem 2.1.4 (Miller). Suppose that E is a countable Borel equivalence relation such

that every E-class is infinite. Then there exists an uncountable family F of pairwise non-

embeddable countable groups such that E can be realized as the orbit equivalence relation of

an everywhere faithful Borel action of G for every G ∈ F .

Definition 2.1.5. A countable Borel equivalence relation in which every E-class is infinite

is called aperiodic.

Consequently, we shall be especially concerned with free, measure-preserving Borel actions

of countable groups on standard Borel probability spaces. A natural question, then, is whether

we can always hope for this setting:

Question 2.1.6. Let E be a nonsmooth countable Borel equivalence relation. Does there

necessarily exist a countable group G with a free measure-preserving Borel action on a standard

probability space (X,µ) such that E ∼B EX
G ?

We first observe that half of this question is easily answered: namely, if E is a countable

Borel equivalence relation on an uncountable standard Borel space Y , then there exists a

countable group G and a standard Borel G-space X such that G preserves a nonatomic

probability measure µ on X, and E ∼B EX
G . To see this, let G be a countable group with

a Borel action on Y such that EY
G = E. Then we can regard X = Y t [0, 1] as a standard

Borel G-space by letting G act trivially on [0, 1]. If we regard the usual probability measure

µ on [0, 1] as a probability measure on X which concentrates on [0, 1], then EX
G satisfies our

requirements. At this point, it is convenient to introduce two more definitions.

Definition 2.1.7. The countable Borel equivalence relation E on X is free iff there exists a

countable group G with a free Borel action on X such that EX
G = E.

Definition 2.1.8. The countable Borel equivalence relation E is essentially free iff there

exists a free countable Borel equivalence relation F such that E ∼B F .

In view of the above discussion, it is clear that we should replace Question 2.1.6 by the

following question (which no longer mentions an invariant measure).

Question 2.1.9 (Jackson-Kechris-Louveau [19]). Is every countable Borel equivalence relation

essentially free?
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2.2. Essentially Free Countable Borel Equivalence Relations. Before answering Ques-

tion 2.1.9, it will be helpful to first list some closure properties of essential freeness, which we

will state without proof.

Theorem 2.2.1 (Jackson-Kechris-Louveau [19]). Let E,F be countable Borel equivalence

relations on the standard Borel spaces X,Y respectively.

• If E ≤B F and F is essentially free, then so is E.

• If E ⊆ F and F is essentially free, then so is E.

It follows that every countable Borel equivalence relation is essentially free iff the universal

countable Borel equivalence relation E∞ is essentially free. The following result will be proved

in Subsection 2.3.

Theorem 2.2.2 (Thomas 2006, [36]). The class of essentially free countable Borel equivalence

relations does not admit a universal element. In particular, E∞ is not essentially free.

Thus, unfortunately, the answer to Question 2.1.6 is no. As a corollary to 2.2.2 and 2.2.1,

we observe that ≡T is not essentially free; for identifying the free group F2 with a suitably

chosen group of recursive permutations of N, we have that E∞ ⊆≡T .

This gives us the following map of the universe of nonsmooth countable Borel equivalence

relations. t

Essentially
Free

t E0

E∞

Turing
Equivalence



14 SIMON THOMAS AND SCOTT SCHNEIDER

2.3. Bernoulli Actions, Popa Superrigidity, and the Proof of Theorem 2.2.2. In this

section, we will state a striking consequence of Popa’s Superrigidity Theorem, which easily

implies Theorem 2.2.2. We will begin with a short discussion of Bernoulli actions.

By a Bernoulli action, we mean the shift action of a countably infinite discrete group G on

its powerset P(G) = 2G, defined by g · x(h) = x(g−1h). (This is a special case of the notion

as it appears in Popa [29]). Under this action, the usual product probability measure µ on

2G is G-invariant and the free part

P∗(G) = (2)G = {x ∈ 2G | g · x 6= x for all 1 6= g ∈ G}

has µ-measure 1. We let EG denote the corresponding orbit equivalence relation on (2)G and

make the following observation:

Proposition 2.3.1. If G ≤ H, then EG ≤B EH .

Proof. The inclusion map P∗(G) ↪→ P∗(H) is a Borel reduction from EG to EH . �

Now we just need a few more preliminary definitions before we can state the consequence

of Popa’s theorem which we will need to prove Theorem 2.2.2.

Definition 2.3.2. If E, F are Borel equivalence relations on the standard Borel spaces X,

Y respectively, then a Borel map f : X → Y is said to be a homomorphism from E to F if

x E y =⇒ f(x) F f(y)

for all x, y ∈ X.

Definition 2.3.3. If µ is an E-invariant probability measure on X, then the Borel homo-

morphism f : X → Y from E to F is said to be µ-trivial if there exists a Borel subset Z ⊆ X

with µ(Z) = 1 such that f maps Z into a single F -class.

Definition 2.3.4. If G and H are countable groups, then the homomorphism π : G → H is

a virtual embedding if |ker π| <∞.

Now we are finally ready to state the consequence of Popa’s Cocycle Superrigidity Theorem

[29] that we shall use to prove Theorem 2.2.2. We shall discuss Popa’s theorem and deduce

the following consequence at a later point in these notes.
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Theorem 2.3.5. Let G = SL3(Z) × S, where S is any countable group. Let H be any

countable group and let Y be a free standard Borel H-space. If there exists a µ-nontrivial

Borel homomorphism from EG to EY
H , then there exists a virtual embedding π : G→ H.

We observe that, in particular, this conclusion holds if there exists a Borel subset Z ⊆ (2)G

with µ(Z) = 1 such that EG � Z ≤B EY
H . Theorem 2.2.2 is then an immediate corollary of

the following:

Theorem 2.3.6. If E is an essentially free countable Borel equivalence relation, then there

exists a countable group G such that EG 6≤B E.

Proof. We can suppose that E = EX
H is realized by a free Borel action on X of the countable

group H. Let L be a finitely generated group which does not embed into H. Let S = L ∗ Z

and let G = SL3(Z)× S. Then G has no finite normal subgroups and so there does not exist

a virtual embedding π : G→ H. It follows that EG 6≤B EX
H . �

2.4. Free and Non-Essentially Free Countable Borel Equivalence Relations. We

will now use 2.3.5 to show that there are continuum many free countable Borel equivalence

relations. For each prime p ∈ P, let Ap =
⊕∞

i=0 Cp, where Cp is the cyclic group of order p ;

and for each subset C ⊆ P, let

GC = SL3(Z)×
⊕
p∈C

Ap.

Then the desired result is an immediate consequence of the following:

Theorem 2.4.1. If C,D ⊆ P, then EGC
≤B EGD

iff C ⊆ D.

Proof. If C ⊆ D, then GC ≤ GD, and hence EGC
≤B EGD

. Conversely, applying 2.3.5, if

EGC
≤B EGD

, then there exists a virtual embedding π : GC → GD. Since SL3(Z) contains

a torsion-free subgroup of finite index, it follows that for each p ∈ C, the cyclic group Cp

embeds into
⊕

q∈D Aq and this implies that p ∈ D. �

We will now show that there also exist continuum many non-essentially free countable

Borel equivalence relations. We begin by introducing the notion of ergodicity.

Definition 2.4.2. Let G be a countable group and let X be a standard Borel G-space with

G-invariant probability measure µ. Then the action of G on (X,µ) is said to be ergodic if

µ(A) = 0 or µ(A) = 1 for every G-invariant Borel subset A ⊆ X.
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For example, every countable group G acts ergodically on ((2)G, µ). (This is a consequence

of Theorem 3.1.3.) The following characterization of ergodicity is well-known.

Theorem 2.4.3. If µ is a G-invariant probability measure on the standard Borel G-space X,

then the following statements are equivalent.

• The action of G on (X,µ) is ergodic.

• If Y is a standard Borel space and f : X → Y is a G-invariant Borel function, then

there exists a G-invariant Borel subset M ⊆ X with µ(M) = 1 such that f � M is a

constant function.

Finally we need just one more definition.

Definition 2.4.4. The countable groups G,H are said to be virtually isomorphic if there

exist finite normal subgroups N �G, M �H such that G/N ∼= H/M .

The groups given by the following lemma will be used below to construct the desired

examples of non-essentially free countable Borel equivalence relations. (The proof of Lemma

2.4.5 can be found in Thomas [36].)

Lemma 2.4.5. There exists a Borel family {Sx | x ∈ 2N} of finitely generated groups such

that if Gx = SL3(Z)× Sx, then the following conditions hold:

• If x 6= y, then Gx and Gy are not virtually isomorphic.

• If x 6= y, then Gx does not virtually embed in Gy.

Now, for each Borel subset A ⊆ 2N, let EA =
⊔

x∈AEGx
be the corresponding smooth

disjoint union; i.e. EA is the countable Borel equivalence relation defined on the standard

Borel space ⊔
x∈A

(2)Gx = { (x, r) | x ∈ A, r ∈ (2)Gx }

defined by

(x, r) EA (y, s) ⇐⇒ x = y and r EGx
s.

Lemma 2.4.6. If the Borel subset A ⊆ 2N is uncountable, then EA is not essentially free.

Proof. Suppose that EA ≤B EY
H , where H is a countable group and Y is a free standard

Borel H-space. Then for each x ∈ A, we have that EGx ≤B EY
H and so there exists a virtual

embedding πx : Gx → H. Since A is uncountable and each Gx is finitely generated, there
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exist x 6= y ∈ A such that πx[Gx] = πy[Gy]. But then Gx, Gy are virtually isomorphic, which

is a contradiction. �

Lemma 2.4.7. EA ≤B EB iff A ⊆ B.

Proof. It is clear that if A ⊆ B, then EA ≤B EB . Conversely, suppose that EA ≤B EB and

that A 6⊆ B. Let x ∈ A \B. Then there exists a Borel reduction

f : (2)Gx →
⊔

y∈B

(2)Gy

from EGx
to EB . By ergodicity, there exists a µx-measure 1 subset of (2)Gx which maps to

a fixed (2)Gy . This yields a µx-nontrivial Borel homomorphism from EGx to EGy and so Gx

virtually embeds into Gy, which is a contradiction. �

Of course, the existence of uncountably many non-essentially free countable Borel equiva-

lence relations is an immediate consequence of Lemmas 2.4.6 and 2.4.7.

3. Third Session

3.1. Ergodicity, Strong Mixing, and Borel Cocycles. In this section, we will discuss

some of the background material which is necessary in order to understand the statement

of Popa’s Cocycle Superrigidity Theorem and the proof of Theorem 2.3.5. As usual, if a

countable group G acts on a standard probability space (X,µ), then we assume that the

action is both free and measure-preserving, so that we may stand some chance of recovering

the group G and its action on X from the orbit equivalence relation EX
G .

Recall now that a measure-preserving action of a countable group G on a standard Borel

probability G-space (X,µ) is ergodic iff every G-invariant Borel subset of X is null or conull;

equivalently, the action of G on (X,µ) is ergodic iff whenever Y is a standard Borel space

and f : X → Y is a G-invariant Borel function, then there exists a G-invariant Borel subset

M ⊆ X with µ(M) = 1 such that f � M is a constant function. In particular, ergodicity is

a natural obstruction to smoothness: if G acts ergodically on the standard Borel probability

G-space (X,µ), then the corresponding orbit equivalence relation EX
G is not smooth.

Definition 3.1.1. The action of G on the standard probability space (X,µ) is strongly mixing

if for any Borel subsets A,B ⊆ X, we have that

µ(g(A) ∩B) → µ(A) · µ(B) as g →∞.
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In other words, if 〈gn | n ∈ N〉 is any sequence of distinct elements of G, then

lim
n→∞

µ(gn(A) ∩B) = µ(A) · µ(B).

Mixing is a strong form of ergodicity. Indeed, suppose that the action of G on (X,µ) is

strongly mixing and let A ⊆ X be a G-invariant Borel subset. Then

µ(A)2 = lim
g→∞

µ(g(A) ∩A) = lim
g→∞

µ(A) = µ(A),

which implies that µ(A) = 0 or 1. Hence strongly mixing actions are ergodic. However, unlike

ergodicity, strong mixing is a property that passes to infinite subgroups.

Observation 3.1.2. If the action of G on (X,µ) is strongly mixing and H ≤ G is an infinite

subgroup of G, then the action of H on (X,µ) is also strongly mixing.

That the above observations actually apply to our setting is given by the following:

Theorem 3.1.3. The action of G on ((2)G, µ) is strongly mixing.

Sketch Proof. Consider the special case when there exist finite subsets S, T ⊆ G and subsets

F ⊆ 2S , G ⊆ 2T such that A = {f ∈ (2)G | f � S ∈ F} and B = {f ∈ (2)G | f � T ∈ G}. (Of

course, the “cylinder” sets of this form generate the measure µ.) If 〈gn | n ∈ N〉 is a sequence

of distinct elements of G, then gn(S) ∩ T = ∅ for all but finitely many n. This means that

gn(A) and B are independent events and so

µ(gn(A) ∩B) = µ(gn(A)) · µ(B) = µ(A) · µ(B).

It follows that limn→∞ µ(gn(A) ∩B) = µ(A) · µ(B). �

The final important concept which we must introduce before stating Popa’s Theorem is

that of a Borel cocycle. Let G, H be countable discrete groups and let X be a standard Borel

G-space with invariant Borel probability measure µ. Then a Borel map α : G×X → H is a

cocycle iff α satisfies the cocycle identity

∀g, h ∈ G α(hg, x) = α(h, gx)α(g, x) µ-a.e.(x).

If β : G ×X → H is another cocycle into H, then we say that α and β are equivalent, and

write α ∼ β, iff there is a Borel map b : X → H such that

∀g ∈ G β(g, x) = b(gx)α(g, x) b(x)−1 µ-a.e.(x).

It is clear that ∼ is an equivalence relation on the set of cocycles G×X → H.
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In these lectures, cocycles α : G × X → H will always arise from Borel homomorphisms

into free standard Borel H-spaces in the following way. Suppose that Y is a free standard

Borel H-space and that f is a Borel homomorphism from EX
G to EY

H . Then we can define a

corresponding cocycle α : G×X → H by

α(g, x) = the unique h ∈ H such that h · f(x) = f(g · x).

Moreover, if α is the cocycle corresponding in this manner to the Borel homomorphism f :

X → Y and if b : X → H is any Borel function, then the map f ′ : X → Y defined by

f ′(x) = b(x)f(x) is also a Borel homomorphism, and the corresponding cocycle β is equivalent

to α via the the equation

β(g, x) = b(gx)α(g, x) b(x)−1.

Equivalence of cocycles can be easily visualized with the aid of the following diagram:

G

x

g

y
g · x

(X,µ)

f−−−−→

H

f(x)
b(x)−−−−→ f ′(x)

α(g,x)

y yβ(g,x)

f(g · x) b(g·x)−−−−→ f ′(g · x)

Y

Notice that if the cocycle α : G ×X → H is actually a function of only one variable, i.e.

the value of α(g, x) = α(g) is independent of x, then α is a group homomorphism from G to

H; and if f : X → Y is the corresponding Borel homomorphism, then (G,X)
(α,f)−−−→ (H,Y ) is

a permutation group homomorphism.

3.2. Popa’s Cocycle Superrigidity Theorem and the Proof of Theorem 2.3.5. We

are almost ready to state Popa’s Cocycle Superrigidity Theorem [29]. But first we need to

present a short discussion concerning the notions of amenable, nonamenable and Kazhdan

groups.

A countable (discrete) group G is amenable if there exists a finitely additive G-invariant

probability measure ν : P(G) → [0, 1] defined on every subset of G. For example, finite groups

are amenable and abelian groups are amenable. Furthermore, the class of amenable is closed

under taking subgroups, forming extensions and taking direct limits. In particular, solvable

groups are also amenable. On the other hand, nonabelian free groups are nonamenable; and

for many years, it was a open problem whether every countable nonamenable group contained
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a nonabelian free subgroup, until Ol’shanskii [28] constructed a periodic nonamenable group

in 1980. (An excellent introduction to the theory of amenable groups can be found in Wagon

[37].)

In many senses, the opposite of the notion of an amenable group is that of a Kazhdan

group. For our purposes in these notes, it is enough to know that if m ≥ 3, then SLm(Z) is a

Kazhdan group. However, for the sake of completeness, we will provide the formal definition.

So let G be a countably infinite group and let π : G→ U(H) be a unitary representation of G

on the separable Hilbert space H. Then π almost admits invariant vectors if for every ε > 0

and every finite subset K ⊆ G, there exists a unit vector v ∈ H such that ||π(g).v − v|| < ε

for all g ∈ K. We say that G is a Kazhdan group if for every unitary representation π of G,

if π almost admits invariant vectors, then π has a non-zero invariant vector. (An excellent

introduction to the theory of Kazhdan groups can be found in Lubotzky [24].)

We are finally ready to state (a special case of) Popa’s Cocycle Superrigidity Theorem [29].

Theorem 3.2.1 (Popa). Let Γ be a countably infinite Kazhdan group and let G be a countable

group such that Γ �G. If H is any countable group, then every Borel cocycle

α : G× (2)G → H

is equivalent to a group homomorphism of G into H.

For example, we may let Γ = SLn(Z) for any n ≥ 3 and G = Γ × S, where S is any

countable group. We are now ready to prove Theorem 2.3.5.

Proof of Theorem 2.3.5. Let G = SL3(Z) × S and let Y be a free standard Borel H-space,

where S and H are any countable groups. Suppose the f : (2)G → Y is a µ-nontrivial

Borel homomorphism from EG to EY
H , where EG denotes the orbit equivalence relation of the

Bernoulli action of G on ((2)G, µ). Then we can define a Borel cocycle α : G× (2)G → H by

α(g, x) = the unique h ∈ H such that h · f(x) = f(g · x).

By Theorem 3.2.1, after deleting a null set of (2)G and adjusting f if necessary, we can suppose

that α : G→ H is a group homomorphism.

Suppose that K = ker α is infinite. Note that if k ∈ K, then f(k ·x) = α(k) ·x = f(x) and

so f : (2)G → X is K-invariant. Also since the action of G is strongly mixing, it follows that

K acts ergodically on ((2)G, µ). But then the K-invariant function f : (2)G → X is µ-a.e.

constant, which is a contradiction. �
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3.3. Torsion-free Abelian Groups of Finite Rank. Recall that an additive subgroup

G ≤ Qn has rank n iffG contains n linearly independent elements; and that we have previously

defined the standard Borel space R(Qn) of torsion-free abelian groups of rank n to be

R(Qn) = {A ≤ Qn | A contains a basis of Qn}.

Recall also that for A,B ∈ R(Qn), we have that

A ∼= B iff there exists g ∈ GLn(Q) such that g(A) = B.

Thus the isomorphism relation ∼=n on R(Qn) is the orbit equivalence relation arising from the

natural action of GLn(Q) on R(Qn).

In 1937, Baer [4] gave a satisfactory classification of the rank 1 groups, which showed that

∼=1 is hyperfinite. In 1938, Kurosh [23] and Malcev [25] independently gave unsatisfactory

classifications of the higher rank groups. In light of this failure to classify even the rank 2

groups in a satisfactory way, Hjorth-Kechris [17] conjectured in 1996 that the isomorphism

relation for the torsion-free abelian groups of rank 2 was countable universal. As an initial

step towards establishing this result, Hjorth [15] then proved in 1998 that the classification

problem for the rank 2 groups is strictly harder than that for the rank 1 groups; that is,

Hjorth proved that ∼=1<B
∼=2. Soon afterwards, making essential use of the techniques of

Hjorth [15] and Adams-Kechris [2], Thomas obtained the following [34]:

Theorem 3.3.1 (Thomas 2000). The complexity of the classification problem for the torsion-

free abelian groups of rank n increases strictly with the rank n.

Of course, this implies that none of the relations ∼=n is countable universal. It remained

open, however, whether the isomorphism relation on the space of torsion-free abelian groups of

finite rank was countable universal. In 2006 [36], making use of Popa’s Cocycle Superrigidity

Theorem, Thomas was finally able to show that it is not.

Theorem 3.3.2 (Thomas 2006). The isomorphism relation on the space of torsion-free

abelian groups of finite rank is not countable universal.

In the next two sections, we shall present an outline of the proof of Theorem 3.3.2. We

will begin by introducing the notion of E0-ergodicity, which will play an important role at

the end of the proof.
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3.4. E0-ergodicity. The following is another useful strengthening of ergodicity.

Definition 3.4.1. Let E,F be countable Borel equivalence relations on the standard Borel

spaces X,Y and let µ be an E-invariant probability measure on X. Then E is said to be

F -ergodic iff every Borel homomorphism f : X → Y from E to F is µ-trivial.

Thus idR-ergodicity coincides with the usual notion of ergodicity. Furthermore, observe

that if E is F -ergodic and F ′ ≤B F , then E is also F ′-ergodic. The following characterization

of E0-ergodicity is due to Jones-Schmidt [20].

Definition 3.4.2. Let E = EX
G be a countable Borel equivalence relation and let µ be an

E-invariant probability measure on X. Then E has nontrivial almost invariant subsets iff

there exists a sequence of Borel subsets 〈An ⊆ X | n ∈ N〉 satisfying the following conditions:

• µ(g ·An 4An) → 0 for all g ∈ G.

• There exists δ > 0 such that δ < µ(An) < 1− δ for all n ∈ N.

Theorem 3.4.3 (Jones-Schmidt). Suppose that E is a countable Borel equivalence relation

on the standard Borel space X and that µ is an ergodic E-invariant probability measure. Then

E is E0-ergodic iff E has no nontrivial almost invariant subsets.

This can in turn be used to prove the following:

Theorem 3.4.4 (Jones-Schmidt). If G is a countable group and H ≤ G is a nonamenable

subgroup, then the shift action of H on ((2)G, µ) is E0-ergodic.

Finally, we remark for later use that if E is E0-ergodic and F is hyperfinite, then E is also

F -ergodic. We are now ready to commence our sketch of the proof of the non-universality of

the isomorphism relation on the space of torsion-free abelian groups of finite rank.

3.5. The Non-universality of the Isomorphism Relation on Torsion-free Abelian

Groups of Finite Rank. Roughly speaking, the strategy of our proof will be as follows. The

results of Jackson-Kechris-Louveau [19, Section 5.2] easily imply that a smooth disjoint union

of countably many essentially free countable Borel equivalence relations is itself essentially free;

and we already know that the class of essentially free countable Borel equivalence relations

does not admit a universal element. Since the isomorphism relation on the space of torsion-

free abelian groups of finite rank is the smooth disjoint union of the ∼=n relations, n ≥ 1, it

would thus suffice to show that each ∼=n is essentially free. Unfortunately, it appears to be
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difficult to determine whether this is true even for the case when n = 2. However, we shall

show that the coarser quasi-isomorphism relation is “(hyperfinite)-by-(essentially free)”, and

this will turn out be enough. We will now proceed with the details.

Let G = SL3(Z) × S, where S is a suitably chosen countable group that we shall specify

at a later stage in the proof. Let E = EG be the orbit equivalence relation arising from the

action of G on ((2)G, µ). Suppose that

f : (2)G →
⊔
n≥1

R(Qn)

is a Borel reduction from E to the isomorphism relation for the torsion-free abelian groups of

finite rank. After deleting a null set of (2)G if necessary, we may assume that f takes values

in R(Qn) for some fixed n ≥ 1.

At this point, we would like to define a Borel cocycle corresponding to f , but unfortunately

GLn(Q) does not act freely on R(Qn). In fact, the stabilizer of each B ∈ R(Qn) under

the action of GLn(Q) is precisely its automorphism group Aut(B). We shall overcome this

difficulty by shifting our focus from the isomorphism relation on R(Qn) to the coarser quasi-

isomorphism relation.

Definition 3.5.1. If A,B ∈ R(Qn), then A and B are said to be quasi-equal, written A ≈n B,

if A ∩B has finite index in both A and B.

Definition 3.5.2. If A,B ∈ R(Qn), then A and B are said to be quasi-isomorphic if there

exists ϕ ∈ GLn(Q) such that ϕ(A) ≈n B.

The following result will play a key role in the proof of Theorem 3.3.2.

Theorem 3.5.3 (Thomas [34]). The quasi-equality relation ≈n is a hyperfinite countable

Borel equivalence relation.

For each A ∈ R(Qn), let [A] be the ≈n-class containing A. We shall consider the induced

action of GLn(Q) on the set X = {[A] | A ∈ R(Qn)} of ≈n-classes. Of course, since ≈n is

not smooth, X is not a standard Borel space; but fortunately this will not pose a problem in

what follows. In order to describe the setwise stabilizer in GLn(Q) of each ≈n-class [A], we

now make some further definitions.

Definition 3.5.4. For each A ∈ R(Qn), the ring of quasi-endomorphisms is

QE(A) = {ϕ ∈ Matn(Q) | (∃m ≥ 1)mϕ ∈ End(A)}.
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Clearly QE(A) is a Q-subalgebra of Matn(Q), and so there are only countably many pos-

sibilities for QE(A), a fact which will be of crucial importance below.

Definition 3.5.5. QAut(A) is the group of units of the Q-algebra QE(A).

Lemma 3.5.6 (Thomas [34]). If A ∈ R(Qn), then QAut(A) is the setwise stabilizer of [A]

in GLn(Q).

For each x ∈ (2)G, let Ax = f(x) ∈ R(Qn). Since there are only countably many possibili-

ties for the group QAut(Ax), there exists a fixed subgroup L ≤ GLn(Q) and a Borel subset

X ⊆ (2)G with µ(X) > 0 such that QAut(Ax) = L for all x ∈ X. Since G acts ergodically

on ((2)G, µ), it follows that µ(G ·X) = 1. In order to simplify notation, we shall assume that

G ·X = (2)G. After slightly adjusting f if necessary, we can suppose that QAut(Ax) = L for

all x ∈ (2)G.

Notice that the quotient group H = NGLn(Q)(L)/L acts freely on the corresponding set

Y = { [A] | QAut(A) = L} of ≈n-classes. Furthermore, if x ∈ (2)G and g ∈ G, then there

exists ϕ ∈ GLn(Q) such that ϕ(Ax) = Ag·x and it follows that ϕ([Ax]) = [Ag·x]. Hence we

can define a corresponding cocycle

α : G× (2)G → H

by setting

α(g, x) = the unique h ∈ H such that h · [Ax] = [Ag·x].

Now let S be a countable simple nonamenable group which does not embed into any of

the countably many possibilities for H. Applying Theorem 3.2.1, after deleting a null set and

slightly adjusting f if necessary, we can suppose that

α : G = SL3(Z)× S → H

is a group homomorphism. Since S ≤ ker α, it follows that f : (2)G → R(Qn) is a Borel

homomorphism from the S-action on (2)G to the hyperfinite quasi-equality ≈n-relation. Since

S is nonamenable, the S-action on (2)G is E0-ergodic and hence µ-almost all x ∈ (2)G

are mapped to a single ≈n-class, which is a contradiction. This completes the proof of

Theorem 3.3.2.
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4. Fourth Session

4.1. Containment vs. Borel Reducibility. Our next goal will be to present some applica-

tions of Ioana’s Cocycle Superrigidity Theorem. We shall focus on a problem that was initially

raised in the context of the Kechris Conjecture that the Turing equivalence relation ≡T is

universal. Recall that the translation action of the free group F2 on its power set gives rise

to a universal countable Borel equivalence relation, which is denoted by E∞. If we identify

F2 with a suitably chosen group of recursive permutations of N, then we see that E∞ may

be realized as a subset of ≡T . Thus the following conjecture of Hjorth [3] implies that ≡T is

universal.

Conjecture 4.1.1 (Hjorth). If F is a universal countable Borel equivalence relation on the

standard Borel space X and E is a countable Borel equivalence relation such that F ⊆ E,

then E is also universal.

In [34], Thomas pointed out that it was not even known whether there existed a pair

F ⊆ E of countable Borel equivalence relations for which F 6≤B E. Soon afterwards, Adams

[1] constructed a pair of countable Borel equivalence relations F ⊆ E which were incomparable

with respect to Borel reducibility. Most of this session will be devoted to a sketch of the proof

of the following application of Ioana’s Cocycle Superrigidity Theorem:

Theorem 4.1.2 (Thomas [33] 2002). There exists a pair of countable Borel equivalence re-

lations F ⊆ E on a standard Borel space X such that E <B F .

Here E and F will arise from the actions of SLn(Z) and a suitably chosen congruence

subgroup on SLn(Zp). We shall first need to recall some basic facts about the ring Zp of

p-adic integers.

Definition 4.1.3. The ring Zp of p-adic integers is the inverse limit of the system

· · · ϕn+1−−−→ Z/pn+1Z ϕn−−→ Z/pnZ ϕn−1−−−→ · · · ϕ1−→ Z/pZ,

where x+ pn+1Z ϕn7−→ x+ pnZ.

It is useful to think of the p-adic integers as formal sums

z = a0 + a1p+ a2p
2 + · · ·+ anp

n + · · ·
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where each 0 ≤ an < p. We define the p-adic norm | |p by

|z|p = p−ordp(z), ordp(z) = min{n | an 6= 0},

and the p-adic metric by

dp(x, y) = |x− y|p.

With this metric, Zp is a compact Polish space having the integers Z as a dense subring. It

follows that SLn(Zp) is a compact Polish group with dense subgroup SLn(Z) ≤ SLn(Zp).

Note that SLn(Zp) is the inverse limit of the system

· · · θn+1−−−→ SLn(Z/pn+1Z) θn−→ SLn(Z/pnZ)
θn−1−−−→ · · · θ1−→ SLn(Z/pZ),

where θn is the map induced by ϕn.

Since SLn(Zp) is compact, there exists a unique Haar probability measure on SLn(Zp);

i.e. a unique probability measure µp which is invariant under the left translation action of

SLn(Zp) on itself.2 In fact, µp is simply the inverse limit of the counting measures on

· · · θn+1−−−→ SLn(Z/pn+1Z) θn−→ SLn(Z/pnZ)
θn−1−−−→ · · · θ1−→ SLn(Z/pZ).

Observe that if H ≤ SLn(Zp) is an open subgroup, then H has finite index in SLn(Zp) and

µp(H) =
1

[SLn(Zp) : H]
.

Theorem 4.1.4. µp is the unique SLn(Z)-invariant probability measure on SLn(Zp).

Proof. First note that SLn(Zp) acts continuously on the space M of probability measures on

SLn(Zp). It follows that if ν is any probability measure on SLn(Zp), then

Sν = {g ∈ SLn(Zp) | ν is g-invariant}

is a closed subgroup of SLn(Zp). Hence, since SLn(Z) is a dense subgroup of SLn(Zp), any

SLn(Z)-invariant probability measure is actually SLn(Zp)-invariant and thus must be µp. �

2The Haar measure on a compact group is also invariant under the right translation action.
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4.2. Unique Ergodicity and Ergodic Components. An action of a group G on a stan-

dard Borel G-space X is said to be uniquely ergodic iff there exists a unique G-invaraint

probability measure µ on X. In this case, it is well-known that µ must be ergodic. To see

this, suppose that A ⊆ X is a G-invariant Borel set with 0 < µ(A) < 1. Then we can define

distinct G-invariant probability measures by

ν1(Z) = µ(Z ∩A)/µ(A)

ν2(Z) = µ(Z \A)/µ(X \A),

which is a contradiction. Note that Theorem 4.1.4 simply states that the action of SLn(Z)

on SLn(Zp) is uniquely ergodic.

Next suppose that Γ is a countable group and that Λ ≤ Γ is a subgroup of finite index.

Let X be a standard Borel Γ-space with an invariant ergodic probability measure µ. Then

a Λ-invariant Borel set Z ⊆ X with µ(Z) > 0 is said to be an ergodic component for the

action of Λ on X iff Λ acts ergodically on (Z, µZ), where µZ is the normalized probability

measure on Z defined by µZ(A) = µ(A)/µ(Z). It is easily checked that there exists a partition

Z1 t · · · t Zd of X into finitely many ergodic components and that the collection of ergodic

components is uniquely determined up to µ-null sets. Furthermore, if the action of Γ on X is

uniquely ergodic, then the action of Λ on each ergodic component is also uniquely ergodic.

Now let n ≥ 3 and fix some prime p. Consider the left translation action of the subgroup

SLn(Z) on SLn(Zp). Then we have already seen that this action is uniquely ergodic. Let

Λ = ker ϕ and H = ker ψ be the kernels of the homomorphisms

ϕ : SLn(Z) → SLn(Z/pZ)
and

ψ : SLn(Zp) → SLn(Zp/pZp) ∼= SLn(Z/pZ).

ThenH is the closure of Λ in SLn(Zp) and the ergodic decomposition of the Λ-action coincides

with the coset decomposition

SLn(Zp) = Hg1 t · · · tHgd, d = |SLn(Z/pZ)|.

We are now ready to state Thomas’ result.

Theorem 4.2.1. Let n ≥ 3 and let F ⊆ E be the orbit equivalence relations of the actions of

Λ and SLn(Z) on SLn(Zp). Then E <B F .

We shall devote the next section to a proof of this result.
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4.3. The proof of Theorem 4.2.1. By considering the ergodic decomposition of the Λ-

action,

SLn(Zp) = Hg1 t · · · tHgd, d = |SLn(Z/pZ)|,

we see that

F = E1 ⊕ · · · ⊕ Ed, where Ei = F � Hgi.

We claim that E ∼B Ei for each 1 ≤ i ≤ d.

To see that Ei ≤B E, we check that the inclusion mapHgi → SLn(Zp) is a Borel reduction.

Suppose that x, y ∈ Hgi. Clearly if xEiy then xEy, since F ⊆ E. Conversely, if xEy, then

there exists γ ∈ SLn(Z) such that γx = y, whence ∅ 6= γHgi ∩ Hgi = Hγgi ∩ Hgi and so

γ ∈ SLn(Z) ∩H = Λ.

To show that E ≤B Ei, we choose the coset representatives gk so that each gk ∈ SLn(Z).

Then for each 1 ≤ k ≤ d, define hk : Hgk → Hgi by hk(x) = gig
−1
k x. We claim that

h = h1 ∪ · · · ∪ hd is a Borel reduction from E to Ei. To see this, note that if x, y ∈ SLn(Zp),

then

xEy iff h(x)Eh(y)

iff h(x)Eih(y),

where this last equivalence holds because h(x), h(y) ∈ Hgi. This completes the proof that

E ∼B Ei for each 1 ≤ i ≤ d; and hence we have that

F ∼B E ⊕ · · · ⊕ E︸ ︷︷ ︸
d times

.

Therefore it will be enough to prove the following:

Theorem 4.3.1 (Thomas [33] 2002). If n ≥ 3, then

E <B E ⊕ E <B · · · <B E ⊕ · · · ⊕ E︸ ︷︷ ︸
m times

<B · · ·

Proof. Let Γ = SLn(Z) and let (K,µ) = (SLn(Zp), µp), so that E is the orbit equivalence

relation arising from the action of Γ on K. It clearly suffices to show that if f : K → K is a

Borel reduction from E to E, then µ(Γ · f(K)) = 1.

So suppose that f : K → K is a Borel reduction from E to E. Since Γ acts freely on K,

we can define a corresponding Borel cocycle α : Γ×K → Γ by

α(g, x) = the unique h ∈ Γ such that h · f(x) = f(g · x).
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By Ioana’s Superrigidity Theorem [18] (which we will state and discuss in the next section),

there exists a subgroup ∆ ≤ Γ of finite index and an ergodic component X ⊆ K for the

∆-action such that α � (∆×X) is equivalent to a group homomorphism

ψ : ∆ → SLn(Z).

After slightly adjusting f if necessary, we can suppose that α � (∆×X) = ψ and hence that

ψ(g) · f(x) = f(g · x) for all g ∈ ∆ and x ∈ X.

Furthermore, since ∆ is residually finite, after passing to a subgroup of finite index if necessary,

we can also suppose that ∆ ∩ Z(SLn(Z)) = 1.

Claim 4.3.2. Either ψ(∆) is finite, or else ψ is an embedding and ψ(∆) is a subgroup of

finite index in SLn(Z).

Proof of Claim 4.3.2. Suppose that ψ is not an embedding and let N = kerψ. Then the

Margulis Normal Subgroup Theorem [26, Chapter VIII] implies that [ ∆ : N ] <∞ and hence

ψ(∆) is finite. Thus we can suppose that ψ is an embedding. Let π : SLn(Z) → PSLn(Z)

be the canonical surjective homomorphism and let θ = π ◦ψ. Then, arguing as above, we see

that θ : ∆ → PSLn(Z) is also an embedding. Applying Margulis [26, Chapter VII], it follows

that θ extends to an R-rational homomorphism Θ : SLn(R) → PSLn(R) and it is easily seen

that Θ is surjective. Since ∆ is a lattice in SLn(R), it follows that θ(∆) = Θ(∆) is a lattice in

PSLn(R) and this implies that θ(∆) is a subgroup of finite index in PSLn(Z). Hence ψ(∆)

is a subgroup of finite index in SLn(Z). �

First suppose that ψ(∆) is finite. Then we can define a ∆-invariant map φ : X → [K]<ω

by

φ(x) = {f(g · x) | g ∈ ∆};

and since ∆ acts ergodically on X, it follows that φ is constant on a µ-conull subset of X,

which is a contradiction.

Thus ψ is an embedding and ψ(∆) is a subgroup of finite index in SLn(Z). Let Y1, . . . , Yd

be the ergodic components for the action of ψ(∆) on K. Since ∆ acts ergodically on X,

we can suppose that there exists a fixed Y = Yi such that f : X → Y . Recalling that

ψ(g) · f(x) = f(g · x), we can now define a ψ(∆)-invariant probability measure ν on Y by

ν(Z) = µ(f−1(Z))/µ(X).
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Since the action of ψ(∆) on Y is uniquely ergodic, it follows that ν(Z) = µ(Z)/µ(Y ). Hence

µ(f(X)) = µ(Y ) > 0 and so µ(Γ · f(K)) = 1, as desired. This completes the proof of

Theorem 4.3.1, and hence also that of Theorem 4.2.1. �

4.4. Profinite Actions and Ioana Superrigidity.

Definition 4.4.1. Suppose that Γ is a countable group and that X is a standard Borel Γ-space

with invariant probability measure µ. Then the action of Γ on (X,µ ) is said to be profinite

if there exists a directed system of finite Γ-spaces Xn with invariant probability measures µn

such that

(X,µ ) = lim
←

(Xn, µn ).

For example, suppose that K is a profinite group and that Γ ≤ K is a countable dense

subgroup. If L ≤ K is a closed subgroup, then the action of Γ on K/L is profinite. In

particular, if Γ is a residually finite group and

Γ = Γ0 > Γ1 > · · · > Γn > · · ·

is a decreasing sequence of finite index normal subgroups such that
⋂

Γn = 1, then Γ is a

dense subgoup of the profinite group lim
←

Γ/Γn and its action as a subgroup will be profinite.

Of course, this example covers the situation discussed above; i.e. the action of SLn(Z) on

SLn(Zp) is profinite.

We are now ready to state Ioana’s Cocycle Superrigidity Theorem [18], which was used in

our proof of Theorem 4.2.1.

Theorem 4.4.2 (Ioana). Let Γ be a countably infinite Kazhdan group and let (X,µ) be a free

ergodic profinite Γ-space. Suppose that H is any countable group and that α : Γ×X → H is

a Borel cocycle. Then there exists a subgroup ∆ ≤ Γ of finite index and an ergodic component

Y ⊆ X for the ∆-action such that α � (∆× Y ) is equivalent to a homomorphism ψ : ∆ → H.

To conclude this section, we shall present a final application of Ioana’s theorem.

Theorem 4.4.3 (Thomas [33] 2002). Fix n ≥ 3. For each nonempty set S of primes, regard

SLn(Z) as a subgroup of

G(S) =
∏
p∈S

SLn(Zp)

via the diagonal embedding and let ES be the corresponding orbit equivalence relation. If

S 6= T , then ES and ET are incomparable with respect to Borel reducibility.
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Sketch Proof. For simplicity, suppose that S = {p} and T = {q}, where p 6= q are distinct

primes. Suppose that f : SLn(Zp) → SLn(Zq) is a Borel reduction from E{p} to E{q}. Then

applying Ioana Superrigidity and arguing as in the proof of Theorem 4.3.1, we see that after

passing to subgroups of finite index and ergodic components if necessary,

(SLn(Z), SLn(Zp), µp) ∼= (SLn(Z), SLn(Zq), µq)

as measure-preserving permutation groups. Hence it only remains to detect the prime p in

(SLn(Z), SLn(Zp), µp).

Towards this end, recall that Aut(SLn(Z), SLn(Zp), µp) consists of the measure-preserving

bijections ϕ : SLn(Zp) → SLn(Zp) such that for all γ ∈ SLn(Z),

ϕ(γ · x) = γ · ϕ(x) for µp-a.e. x,

where we identify two such maps if they agree µp-a.e. Notice that for each g ∈ SLn(Zp),

we can define a corresponding automorphism ϕ ∈ Aut(SLn(Z), SLn(Zp), µp) by ϕ(x) = xg.

(Here we have made use of the fact that the Haar measure µp on the compact group SLn(Zp)

is also invariant under the right translation action.) The following proposition shows that

there are no others.

Proposition 4.4.4 (Gefter-Golodets [13]). Aut(SLn(Z), SLn(Zp), µp) = SLn(Zp).

Proof. Let ϕ ∈ Aut(SLn(Z), SLn(Zp), µp). For each x ∈ SLn(Zp), let h(x) ∈ SLn(Zp) be

such that ϕ(x) = xh(x). If γ ∈ SLn(Z), then for µp-a.e. x,

ϕ(γ · x) = γ · ϕ(x) = γ · xh(x)

and so h(γ · x) = h(x). Since SLn(Z) acts ergodically on (SLn(Zp), µp), there exists a fixed

g ∈ SLn(Zp) such that h(x) = g for µp-a.e. x. �

Thus we have reduced our problem to that of detecting the prime p in the topological group

SLn(Zp). But this is easy, since SLn(Zp) is virtually a pro-p group. More precisely, if H is

any open subgroup of SLn(Zp), then

[SLn(Zp) : H] = bpl

for some l ≥ 0 and some divisor b of |SLn(Z/pZ)|. This completes our sketch of a proof of

Theorem 4.4.3. �
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4.5. Open Problems. In this closing section, we shall point out some of the many open

problems in the field of countable Borel equivalence relations.

4.5.1. Hyperfinite Relations. Recall that a countable Borel equivalence relation E on a stan-

dard Borel space X is said to be hyperfinite if E can be written as the union of a countable

increasing sequence of finite Borel equivalence relations. A theorem of Dougherty-Jackson-

Kechris [7] provides two additional characterizations:

Theorem 4.5.1 (Dougherty-Jackson-Kechris). If E is a countable Borel equivalence relation

on a standard Borel space X, then the following are equivalent:

• E is hyperfinite.

• E ≤B E0.

• There exists a Borel action of Z on X such that E = EX
Z .

In fact, every Z-action on a standard Borel Z-space X yields a hyperfinite orbit equivalence

relation; and by a recent theorem of Gao-Jackson [12], even more is true.

Theorem 4.5.2 (Gao-Jackson). If G is a countable abelian group and X is a standard Borel

G-space, then EX
G is hyperfinite.

An important question concerns how much further this result can be extended. By a

theorem of Jackson-Kechris-Louveau [19], if G is a countable, nonamenable group, then the

orbit equivalence relation EG arising from the free action of G on ((2)G, µ) is not hyperfinite.

However, the following problem remains open:

Question 4.5.3 (Weiss [38]). Suppose that G is a countable amenable group and that X is a

standard Borel G-space. Does it follow that EX
G is hyperfinite?

As a partial answer, we have the following theorem of Connes-Feldman-Weiss [5].

Theorem 4.5.4 (Connes-Feldman-Weiss). Suppose that G is a countable amenable group

and that X is a standard Borel G-space. If µ is any Borel probability measure on X, then

there exists a Borel subset Y ⊆ X with µ(Y ) = 1 such that E � Y is hyperfinite.

4.5.2. Treeable Relations.

Definition 4.5.5. The countable Borel equivalence relation E on X is said to be treeble iff

there is an acyclic Borel graph (X,R) whose connected components are the E-classes.
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For example, if a countable free group F acts freely on a standard Borel F-space X, then

the corresponding orbit equivalence relation EX
F is treeable. Conversely, by a theorem of

Jackson-Kechris-Louveau [19], if E is treeable, then there exists a free Borel action of a

countable free group F on a standard Borel space Y such that E ∼B EY
F . It is easily seen

that every hyperfinite countable Borel equivalence relation is treeable; and it is known that

the universal countable Borel equivalence relation E∞ is not treeable. On the other hand,

there exist countable Borel equivalence relations which are treeable but not hyperfinite. For

example, the orbit equivalence relation E∞T arising from the free action of F2 on (2)F2 is not

hyperfinite.

Theorem 4.5.6 (Jackson-Kechris-Louveau [19]). E∞T is universal for treeable countable

Borel equivalence relations.

For many years, it was an important open problem whether there existed infinitely many

treeable countable Borel equivalence relations up to Borel bireducibility. This question has

very recently been solved by Hjorth:

Theorem 4.5.7 (Hjorth [16]). There exist uncountably many treeable countable Borel equiv-

alence relations which are pairwise incomparable with respect to Borel reducibility.

An intriguing aspect of Hjorth’s proof is that it does not provide an explicit example of

a single pair E, F of incomparable treeable countable Borel equivalence relations. However,

there is a natural candidate for an explicit family of uncountably many treeable countable

Borel equivalence relations which are pairwise incomparable with respect to Borel reducibility.

For each nonempty set S of primes, regard SL2(Z) as a subgroup of

G(S) =
∏
p∈S

SL2(Zp)

via the diagonal embedding and let ES be the corresponding orbit equivalence relation. Then

ES is a non-hyperfinite profinite treeable Borel equivalence relation.

Conjecture 4.5.8 (Thomas). If S 6= T , then ES and ET are incomparable with respect to

Borel reducibility.

We will finish this section with an attractive (but almost certainly false) conjecture of

Kechris. Recall that in 1980, Ol’shanskii [28] refuted the so-called “von Neumann conjecture”
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(which is actually due to Day) by constructing a periodic nonamenable group, which clearly

had no free nonabelian subgroups. However, the following analogous problem remains open:

Conjecture 4.5.9 (Kechris). If E is a non-hyperfinite countable Borel equivalence relation,

then there exists a non-hyperfinite treeable countable Borel equivalence relation F such that

F ≤B E.

4.5.3. Universal Relations. There are many basic open problems concerning universal count-

able Borel equivalence relations, including the following:

Conjecture 4.5.10 (Hjorth). If E is a universal countable Borel equivalence relation on the

standard Borel space X and F is a countable Borel equivalence relation such that E ⊆ F ,

then F is also universal.

Conjecture 4.5.11 (Kechris). The Turing equivalence relation ≡T is countable universal.

Question 4.5.12 (Jackson-Kechris-Louveau [19]). Suppose that E is a universal countable

Borel equivalence relation on the standard Borel space X and that Y ⊆ X is an E-invariant

Borel subset. Does it follow that either E � Y or E � (X \ Y ) is universal?

Finally we conclude with two questions concerning the notion of a minimal cover of an

equivalence relation.

Definition 4.5.13. If E, E′ are countable Borel equivalence relations, then E′ is a minimal

cover of E if:

• E <B E′; and

• if F is a countable Borel equivalence relation such that E ≤B F ≤B E′, then either

E ∼B F or F ∼B E′.

Open Problem 4.5.14 (Thomas). Find an example of a nonsmooth countable Borel equiv-

alence relation which has a minimal cover.

Open Problem 4.5.15 (Thomas). Find an example of a nonuniversal countable Borel equiv-

alence relation which does not have a minimal cover.
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