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H: a complex, infinite-dimensional Hilbert space
): an orthonormal basis of H

(&|n):  the inner product on H

1€l ="V (€l€)

a: H— H: a linear operator

lall = sup{llag]| | € € H, [l€]l = 1}

a is bounded if ||a]| < occ.
(B(H),+,-,*,|| - |): the algebra of all bounded operators on H.
The adjoint, a*, is defined implicitly by

(a%¢[n) = (€lan)
for all £,n in H.



Lemma
For all a, b we have

1. (a%)* = a,
2. |lall = lla"1I,

3. [labll < fall - [
4. Jlaa*]| = [la]l*.
Hence B(H) is a Banach algebra with involution. (4) is the “"C*

equality.”

’



Example
If H=L%(X,p) and f: X — C is bounded and measurable, then

H>gw— me(g)="fgeH
is a bounded linear operator. We have ||m¢|| = ||f||cc and
me = m;

Hence mims = memy = mg2.



An operator a is normal if aa* = a*a.
If &: H; — Hy is an isomorphism between Hilbert spaces, then

a— Add(a) = dad?

is an isomorphism between B(H;) and B(H>).
Theorem (Spectral Theorem)

If a is a normal operator then there is a finite measure space
(X, i), a measurable function f on X, and a Hilbert space
isomorphism ®: L2(X, ) — H such that Ad®dms = a.



An operator is self-adjoint if a = a*. For any b € B(H) we have
b= by — iby,

with both by = (b + b*)/2 and by = i(b* — b)/2 self-adjoint.

Fact
a is self-adjoint iff (a&|§) is real for all §.

P

((a—a%)¢le) = (ac]€) — (a7€[€) = (al€) — (£]ag) = (at[€) — (a]€).
O



An operator b such that (b¢|§) > 0 for all £ € H is positive.

Example
me > 0 iff v{x | f(x) <0} =0.



For any self-adjoint a € B(H) we have a = ag — a1, with both ag
and a; positive. (Hint: spectral theorem.)

Lemma
b is positive iff b = a*a for some (non-unique) a.

Proof.
(<) (a"a¢[€) = (a¢lag) = 0.

(=) If b is positive, by the spectral theorem we may assume
b= mg for f > 0. Leta:m\ﬁ.



A p € B(H) is a projection if p?> = p* = p.

Lemma
p is a projection iff it is an orthogonal projection to a closed
subspace of H.

Pf. We have p = ms and f = f2 = f. Hence f(x) € {0,1} for
almost all x, and m¢ = proj g supp(g)cy) With Y = f{1}). O



| is the identity operator on H.
An operator u is unitary if uu* = v*u=1.
An operator v is a partial isometry if

p=w"*and g=v'v

are both projections.

Example

A partial isometry that is not a normal operator. Let (e,) be the
orthonormal basis of H. The unilateral shift S is defined by

S(en) = ept1 for all n.
Then S*(ent1) = en and S*(eg) = 0.



We have an analogue of z = re? for complex numbers.

Theorem (Polar Decomposition)
Every a in B(H) can be written as

a=bv

where b is positive and v is a partial isometry.

This does not mean that understanding arbitrary operators reduces
to understanding self-adjoints and partial isometries.

Problem

Does every a € B(H) have a nontrivial closed invariant subspace?

The answer is easily positive for all normal operators and all partial
isometries.



| is the identity operator on H.
Definition (Spectrum)

o(a) ={\ € C|a— Al is not invertible}.

Lemma

[y

o(a) is always a compact subset of C.
o(a*)={\| A €a(a)}.

a is self-adjoint iff o(a) C R.

a is positive iff o(a) C [0, 00).

N



Concrete and abstract C* algebras
g

Definition (Concrete C* algebras)

If X C B(H) let A= C*(X) be the smallest norm-closed
subalgebra of B(H).

Definition
A is an abstract C* algebra if it is a Banach algebra with
involution such that ||aa*|| = ||a||? for all a.



Example

X is a locally compact Hausdorff space.

Co(X) ={f: X — C | f is continuous and vanishes at co}.

=7

Co(X) is abelian, in particular each operator is normal.

f is self-adjoint  iff
f is positive iff

f is a projection iff
iff

iff

the range(f) C R.

range(f) C [0, c0).

f2(x) = f(x) = f(x)
range(f) C {0,1}

f = xy for a clopen U C X.

If X is compact then Co(X) = C(X) has the identity, and we have

o(f) = range(f).



Example

My,: n x n complex matrices. M, = B(¢3).

adjoint, unitary:
self-adjoint:
positive:

o(a):

spectral theorem:

the usual meaning.

hermitian.

positively definite.

the set of eigenvalues.

spectral theorem.

(normal matrices are diagonalizable)



The algebra of compact operators,

K(H) =C*({a € B(H) | a[H] is finite-dimensional}).

={a € B(H) | a[unit ball] is compact}

Fact

Ifr, = proj%{ejugn} TFAE
1. ae K(H),
2. limy[[a(/ — r,)|| = 0,
3. limy, ||(I — rp)al] = 0.

OJ



Note: if a is self-adjoint then
la(l = ra) [l = [I(a(l = ra))*[l = [|(/ — rn)all.

IC(H) is an ideal of B(H) (closed, two-sided, self-adjoint ideal).
The quotient C(H) = B(H)/K(H) is the Calkin algebra.

m: B(H) — C(H) is the quotient map.

o(m(a)) = oe(a): the essential spectrum of a.

Here
oe(a) = the set of all accumulation points of o(a)

plus all points of o(a) of infinite multiplicity



Direct (inductive) limits
If Q is a directed set, A;, i € Q are C* algebras and
ij: Ai — A fori <j
is a commuting family of *-homomorphisms, define the direct limit
A=IlimA;,.
i

For a € A; let

lall = tim [loij(a) ]l A
and take the completion.
Example

The CAR (Canonical Anticommutation Relations) algebra (aka the
Fermion algebra, aka My UHF algebra).

CD,,Z Mgn — M2n+1

On(a) = (g 0) |



FDD algebras

If (E,) is an orthogonal decomposition of H into finite-dimensional
subspaces then

DIE] = {a € B(H) | each E, is a-invariant}.

If E refines F, then D[E] < DIF].



Fact
The unilateral shift S does not belong to D[E] for any E.

Pf. Some a is Fredholm if its Fredholm index
index(a) = dim ker(a) — dim ker(a")

is finite.
If a € D[E] is Fredholm then index(a) = 0.
However, index(S) = —1. [



Lemma
If a € B(H) is normal then

C*(a, 1) = C(o(a)).

For every f: o(a) — C we can define f(a) € C*(a, ).

For example:
_lal+a fa|—a
2 2

If a >0, then /a is defined.




Unital algebras

A C* algebra is unital if it has a unit (multiplicative identity).

Lemma
Every C* algebra A is contained in a unital C* algebra
A=ZApC.

We call A the unitization of A.



If A< B we say A is a unital subalgebra of B if both B is unital
and its unit belongs to A.
If a € A and A is unital, one could define

oa(a) = {X € C| a— Al is not invertible}.

Lemma
Assume A is a unital subalgebra of B and a € A. Then

aA(a) = UB(a).



Lemma
Every *-homomorphism & between C* algebras is continuous.

Pf. We prove ® is a contraction.
Note that o(®(a)) C o(a). Thus for a normal

llall = sup{|A| | A € o(a)}
> sup{|A| | A € o(®(a))}
= [[®(a)

For general a we have

lall = v/llaa*[| > V/[®(aa*) ]| = [®(a)]l.




Pure states and the GNS construction

Theorem (Gelfand—Naimark)

Every commutative C*-algebra is isomorphic to Co(X) for some
locally compact Hausdorff space X. If it is moreover unital, then X
can be chosen to be compact.

Theorem (Gelfand—Naimark-Segal)

Every C*-algebra A is isomorphic to a closed subalgebra of B(H)
for some Hilbert space H.

A continuous linear functional ¢: A — C is positive if p(a) > 0 for

all positive a. It is a state if p(/) = 1.
S(A) is the space of all states on A.



If £ is a unit vector, define a functional wg on B(H) by

we(a) = (agle)-

Then we(a) > 0 for a positive a and we(/) = 1; hence it is a state.
States form a weak*-compact convex subset of A*.
Cauchy—Schwartz for states:

|p(a*b)|? < p(a*a)p(b*b).



Theorem (GNS)

Assume @ is a state on A. There is a representation

7y A — B(H,) and a unit vector £ = &, in H, such that
p(a) = we(a)

for all a.

Proof.
On A x A let

(alb) = p(b"a).
Jo ={a|p(a*a) =0}
H, = 'Z\Zj

m,(a) sends [b],, to [ab],,.



The space of states on A

w1 ~ 7o if Ju: Hy — H> such that

B(Hi)

Py

A Ad u Ad u(a) = vau*

BN

B(H2)



w1 ~ @y if and only if Ju € A such that

A

yi

Adu C

o

A

Theorem
For 1,2 in S(A) we have o1 ~ @3 & Ty ~ Ty,.



Lemma
If||¢]]| =1 then ¢ is a state iff (1) = 1.

A state ¢ is pure iff
p=to+(1—-t), 0<t<1

for some states g, 11 implies ¢ = 1y or ¢ = 1.
IP(A) is the space of all pure states of A.



Example
If A= C(X), then (by Riesz) ¢ is a state iff o(f) = [ f du for
some Borel probability measure .
Lemma
For a state ¢ of C(X) TFAE:
1. ¢ is pure,
2. for some x, € X we have ¢(f) = f(x,)
3. ¢: C(X) — C is a *-homomorphism.



If £ € H is a unit vector, then

we(a) = (agfS)
is a vector state. All vector states are pure.
Definition
Some ¢ € S(B(H))) is singular if p[KC(H)] = {0}.

Theorem
Each state of B(H) is a weak*-limit of vector states.



Fix a free ultrafilter &4 on N. Then

ol (a) = lim (aeqe,)

n—

is a singular state.

=

A state of the form ‘Pz(j) is diagonalized.

Theorem (Anderson, 1977)

Each gos) is pure.

Conjecture (Anderson, 1977)
Every pure state on B(H) can be diagonalized.



The lattice of projections

Let p, g be projections in B(H). Define p < q if pg = p.

Fact
pq=p iff gp = p.

Proof.

Since p = p*, pq = p implies pg = (pq)* = q*p* = gp.
Note that pg = gp if and only if pg is a projection.

p A g: the projection to range(p) N range(q)

pV q: the projection to Span(range(p) U range(q)).




Lemma
The projections in B(H) form a lattice with respect to

AV, <, 1L 0. O

Lemma
B(H) = C*(P(B(H))). That is, Span P(B(H)) is norm-dense in
B(H). O



Lifting elements in the Calkin algebra

IC(H) is a (self-adjoint, norm closed, two-sided) ideal of B(H).
C(H) = B(H)/K(H) is the Calkin algebra.
m: B(H) — C(H) is the quotient map.



Lemma
If a is self-adjoint in C(H), then a = m(a) for a self-adjoint a in
C(H).

Pf. Fix any ap such that m(ag) = a. Let a = (ap + aj)/2. [



Lemma
If p is a projection in C(H), then p = mw(p) for a projection p in
C(H).

Pf. Fix a self-adjoint a such that p = m(a). There are (X, u) and
f € L°(X, ) and a Hilbert space isomorphism ®: L2(X,u) — H
such that ®(ms) = a. Let

o [1 ) 212
=10, ) <12

Then my, is a projection and 7(my) = 7(my). [



Lemma
There is a normal (even a unitary) operator in C(H) that is distinct
from m(v) for any normal v in B(H).

Pf. The image S of the unilateral shift is a unitary in C(H), since
$*S =1 =SS".
If v — S is compact then v is Fredholm, and index(v) = —1. [J



General spectral theorem

Theorem (Spectral Theorem)

If A is an abelian C*-subalgebra of B(H) then there is a finite
measure space (X, i), a subalgebra B of L°(X, i), and a Hilbert
space isomorphism ®: L%(X, 1) — H such that ®[B] = A.



The atomic masa

MASA: MAximal Self-Adjoint SubAlgebra.
Fix H and its orthonormal basis (e,).

(ap) € £

Z anP(Ce,, c B(H).
n

Lemma
AC) = {S" a,Pce,} is a masa in B(H).



Embedding P(N) into P(B(H))

X € P(N)
PE) = Px = PrOJSpan{en|neX}
P(N) 5 X — Px € P(B(H)).
Hence P(N) is a maximal Boolean subalgebra of P(B(H)).



Atomless masa

L%() is also a masa in B(L?(p)) for a diffused measure p.

Fact

P(L>(w)) is a maximal Boolean subalgebra of P(B(H))
isomorphic to the Lebesgue measure algebra, Borel/Null.



Theorem (Johnson—Parrott)
If A'is a masa in B(H) then w[A] is a masa in C(H).
For the atomic masa A we have

A/K(H) ~ £/ cp.

P(N)/Fin 3 [A] — [Pa] € P(£*°/cp).

Both P(N)/Fin and the Lebesgue measure algebra are maximal
boolean subalgebras of P(C(H)).



Lemma
For projections p and q in B(H) TFAE
L. w(p) < 7(aq),
2. q(I — p) is compact,
3. (Ve > 0)(3po < I — p) po is finite-dimensional and
la(! = p — po)|l <e.

We write p <y g if the conditions of Lemma 23 are satisfied.

Corollary

The poset (P(C(H)), <) is isomorphic to the quotient
(P(B(H)), <k)-

Let's write p = 7w(p).



Proposition (Weaver)
P(C(H)) is not a lattice.

Proof.
Enumerate a basis of H as &mn, Ymn for m, n in N.
1 vn—1
Cmn = 7£mn + ——Nmn
n n
K =Span{{mn | m,n € N}, p = projx
L =Span{Cmn | m,n € N}, q = proj,

For f € NN let  M(f) =Span{&m, | m < f(n)}, r(f) = Projs(f) -

Fact

1. r(f) < p forall f,
2. r(f) < q for all f,
3. ifr<g pandr <y g thenr <y r(f) for some f. ]



Cardinal invariants

Recall

a =min{|A| | A is a maximal infinite antichain in P(N)/ Fin}.
Definition (Wofsey, 2006)
A family A C P(B(H)) is almost orthogonal (aof) if pq is compact
for p # q in A.

a* = min{|A| | A is a maximal infinite aof}



Theorem (Wofsey, 2006)

1. It is relatively consistent with ZFC that 8; = a = a* < 2%,
2. MA implies a* = 2%,

Question
Isa=a*?Isa>a*? Isa*>a?

It may seem obvious that a > a*7



Definition/Theorem (Solecki, 1995)

An ideal J on N is an analytic P-ideal if there is a lower
semicontinuous (Isc) submeasure ¢ on N such that

J={X| Iimnsup ©(X \ n) =0}.

Lemma (Steprans, 2007)
Fix a € B(H). Then

JLo={XCN| aP)(f) is compact}
is an analytic P-ideal.

Pf. Let @,(X) = ||Pxal|l. Pxa is compact iff lim, @,(X \ n) =0. [J



Proposition (Wofsey, 2006)
There is a mad family A C P(N) whose image in P(B(H)) is not a
maof.

Proof.

Let &, =2 "/2 Ejz:;n_l e and g = projgzrie -

Then lim, ||geq|| = 0 hence J, is a dense ideal: every infinite
subset of N has an infinite subset in Jj,.

Let A be a mad family contained in Jg.

Then g is almost orthogonal to all Px, X € A.

O



Let

o =min{|A| | Aismad and A £ J
for any analytic P-ideal J}

Fact
a >a, o >a*. O

One can define p*, t*, b*,. ..

Theorem (Hadwin, 1988)

CH implies that any two maximal chains of projections in C(H) are
order-isomorphic.

Conjecture (Hadwin, 1988)

CH is equivalent to ‘any two maximal chains in P(C(H)) are
order-isomorphic.’



Theorem (Wofsey, 2006)

There is a forcing extension in which there are maximal chains in
P(C(H)) of different cofinalities (and 2% = R, ). O
Theorem (essentially Shelah-Steprans)

There is a model of =CH in which all maximal chains in P(N)/ Fin
are isomorphic. O



A twist of projections

Consider

[ =min{|A| | A is a family of commuting projections in C(H)}
that cannot be lifted to a family of commuting projections of B(H)

Lemma
[ > N. L]
Proposition (Farah, 2006)

[ =Ry There are commuting projections p¢, § < wi, in C(H) that
cannot be lifted to commuting projections of B(H).



Pf. Construct p¢ in P(B(H)) so that for £ # n:
1. pepy is compact, and

2. I, polll > 1/4
If (en) diagonalizes each pg, fix X(£) € N such that

de = pc = Py
is compact. Let
_ p®
n = Ploa,.n-1}-

Then a is compact iff lim, ||a(/ — r,)|| = 0.
Fix n such that ||d¢(/ — ra)|| < 1/8 for uncountably many &.
If ||(de — dy)||ra]| < 1/8, then

1 1
Ilpes Polll < [[[Px(¢)s Px(mlll + 153

a contradiction. [J



Automorphisms of C* algebras

Ad u(a) = vau®.

An automorphism & is inner if & = Ad u for some unitary u.

Lemma
If A is abelian then id is its only inner automorphisms.
If A= C(X) then each automorphism is of the form

f=foW

for an autohomeomorphism V of X.

OJ



Lemma
All automorphisms of B(H) are inner. Hence all automorphisms of
any M, are inner. O

Lemma
The CAR algebra (Mo = @, M2) has outer automorphisms.

Pf. & =, Ad ((1) é) is outer since ), (2 (1)) is not in Mae.



Extending pure states

Lemma
If A is a unital subalgebra of B then

1. The restriction of a state of B to A is a state of A.

2. Every (pure) state of A can be extended to a (pure) state of
B.

Pf. (2) By Hahn-Banach {¢) € B* | ¢ [ A=, ||¢|| =1} is
nonempty and by Krein—Milman it has an extreme point. []



Example

Restriction of a pure state to a unital subalgebra need not be pure.
If we is a vector state of B(H) and A is the atomic masa
diagonalized by (en), then we | A is pure iff |(£|es)| = 1 for some n.



Proposition
Assume A < B and B is abelian. If every pure state of A extends
to the unique pure state of B, then A = B.

Proof.
A < C(X) separates points of X. Use Stone-Weierstrass. O

Problem (Noncommutative Stone—Weierstrass problem)

Assume A < B and A separates P(B) U {0}. Does necessarily
A=B?



A C* algebra is simple if and only if it has no (closed, two-sided,
self-adjoint) nontrivial ideals.

Lemma (Akemann—Weaver)

Assume A is a simple separable unital C* algebra and ¢ and i are

its pure states. Then there is a simple separable unital B > A such
that

1. ¢ and v extend to pure states ', i)' of B in a unique way.
2. ¢ and v’ are equivalent. O



Pure states on My

On Mg:

a2

a1 — a0
a2

a
12> — any

or = Q) rn)

w1 <311
' a1
w2 ! <311
' a1
For f € 2N
is in P(Maee).

In Moo, pf ~ g iff {n| f(n) # g(n)} is finite.

Fact
If f # g then |of — @g|| = 2.



Type | algebras

Definition (Kaplansky)

A C* algebra A is of type | if for every irreducible representation
m: A — B(H) we have w[A] 2 K(H).

[Not to be confused with type | von Neumann algebras: B(H) is a
type | von Neumann algebra and a non-type-l C* algebra.]

A C* algebra is simple if and only if it has no (closed, two-sided,
self-adjoint) nontrivial ideals.

Lemma
A type | C* algebra has only one irrep up to equivalence if and
only if it is isomorphic to IC(H) for some H.

Theorem (Glimm)

If A is a non-type-1 C* algebra then there is B < A that has a
quotient isomorphic to Moo



Corollary (Akemann—Weaver, 2002)

If A is non-type-I and has a dense subset of cardinality < 2%°, then
A has nonequivalent pure states.

Proof.
There are pure states ¢r, f € 2N, such that if f # g and
Ad ups = Ad v, then [ju—v|| > 1. O



Naimark’s problem

Theorem (Naimark, 1948)
Any two irreps of KC(H) are equivalent.

Question (Naimark, 1951)
Is the converse true?

Theorem (Akemann—Weaver, 2002)
Assume <». Then Naimark’s problem has a negative solution.



Proof: & and Naimark

Fix hy: a — w1 such that for every g: w; — wj the set

{a| g | @ = hy} is stationary.

Find an increasing chain of simple separable unital C* algebras A,,
o < w1 and pure state 1, of A, so that

1. a < B implies ¢g | Ay = a,
For each A,, let {4 | ¥ < w1} enumerate all of its pure states. If
o is limit, let
Ay = limAs.

—



Now we consider the successor ordinal case, § = « + 1.
Assume there is ¢ € P(A,) such that ¢ [ Ag = gog‘*(ﬁ) for all
8 < a.

Using lemma, let A,+1 be such that v, and ¢ have unique
extensions to A,+1 that are equivalent.

Since A = A, is unital and infinite-dimensional, A 2 KC(H’).



Fix o € P(A).

Claim
{a] ¢ | Aqx € P(Ay} contains a club.

Proof.
For x € Ay, and me N

{1 301, 2 € 8(Aa), o = {1+ ) and [o(x) —va(x)| 2 )

is bounded in w1. O



Fix h: w; — w1 so that
o | A = ph@

for all a.

Let a be such that h [ a = h,. Then ¢ | Aq+1 is equivalent to
Ya+1. Since 141 has unique extension to A,,;, so does ¢ and
they remain equivalent.



Kadison=Singer problem and Anderson's conjecture

Definition
A masa in B(H) has the extension property (EP) if each of its pure
states extends uniquely to a pure state on B(H).

Every vector state has the unique extension to a pure state, hence
this is a property of masas in the Calkin algebra.

1. Kadison-Singer, 1955: The atomless masa does not have the
EP.

2. Anderson, 1974: CH implies there is a masa in the Calkin
algebra with the EP.



Question (Kadison—Singer, 1955)

Does the atomic masa of B(H) have EP?

A positive answer is equivalent to an arithmetic statement, so let’s
go on.



Fix an orthonormal basis (e,) of H, let A be the atomic masa
diagonalized by (e,). Each pure state of A is of the form

wu(a) = lim (aeqlen)

n—

for an ultrafilter &/ on N. .
A state on B(H) of the form cpz(j) is diagonalized (by U, (en)).

Conjecture (Anderson)
Every pure state ¢ of B(H) can be diagonalized.



Recall that on an abelian C* algebra a state is pure iff it is
multiplicative.

Conjecture (Kadison-Singer)

For every pure state @ of B(H) there is an atomic masa A such
that ¢ [ A is multiplicative.

If o [ A is multiplicative, then there is an ultrafilter ¢/ such that ¢
and (s agree on A. We can conclude that ¢ = my, if the answer
to the Kadison—Singer problem is positive.



Theorem (Akemann—Weaver, 2005)

CH implies there is a pure state ¢ on B(H) that is not
multiplicative on any atomic masa.



States are coded by ‘noncommutative finitely additive measures.’
Theorem (Gleason)

Assume p: P(B(H)) — [0,1] is such that o(p + q) = ¢(p) + ©(q)
whenever pq = 0. Then there is a unique state ¢ on B(H) that
extends . O



Lemma
If v is a state on A and p is a projection such that ¢(p) = 1, then

w(a) = ¢(pap) for all a.

Proof.
By Cauchy-Schwartz

lp((1 — p)a)| < V(I — p)p(ata) =0

since a = pa+ (I — p)a we have p(a) = ¢(pa), similarly
¢(pa) = ¢(pap). O



Definition
A family F of projections in a C* algebra is a filter if
1. for p,q in IF there is r € F such that r < p and r < q.
2. forpeF andr > p we haver € F.
A filter generated by X C P(A) is the intersection of all filters
containing X.



A filter F in P(C(H)) lifts if there is a commuting family X in
P(B(H))) that generates a filter F such that #[F] = F.
Note: If F is a filter in C(H), then

F = {p € P(B(H)) | xlp] € F}

is not necessarily a filter.



Question
Does every maximal filter F in P(C(H)) lift?

Theorem (Anderson)

There are a singular pure state ¢ of B(H), an atomic masa Aj,
and an atomless masa Ay such that ¢ | A; is multiplicative for
j=12.



Lemma (Weaver, 2007)

For F in P(B(H)) TFAE:

(A) |lpip2---Pnl| =1 for any n-tuple of projections in F and Fis
maximal with respect to this property.

(B) (Ve > 0) for all finite F C F there is a unit vector ¢ such that

Pl > 1 —¢

for all p € F.

Definition
A family F in P(B(H)) is a quantum filter if the conditions of
Lemma 37 hold.



Theorem (Farah-Weaver, 2007)
Assume F C P(C(H)). TFAE:
1. F is a maximal quantum filter,

2. F=F,={p | v(p) =1} for some pure state .

Proof.
(1) implies (2). For a finite F C F and € > 0 let

Xre ={p €S(B(H)) | p(p) =1 —cforall pe F}.

If £ is as in (B) then we € X .

Since Xr . is weak*-compact ﬂ(,_-ﬁ) XF . # (0. Any extreme point
IS a pure state.

(It can be proved that this intersection is a singleton.)

(2) implies (1). If ¢(pj) =1 for j =1,..., k, then

o(p1p2 ... pk) =1, hence (A) follows. O



Lemma
Let (£n) be an orthonormal basis. If for some n we have
N =U/_, Aj and there is g € F such that
©)
1PDq] < 1

for all j, then F is not diagonalized by (&,).



Lemma
Assume (&,) is an orthonormal basic sequence. There is a partition
of N into finite intervals (J,) such that for all k

&k € Span{e; | i € JyU Jpi1}

(modulo a small perturbation of &) for some n = n(k).
For (Jn) as in Lemma 39 let

={q| ||P_(jjujn+1q|| < 1/2 for all n}

Lemma
Each 5 is dense in P(B(H)).



2 = min{|F| | F € N is <-cofinal}.
t* =min{|T| | T C P(C(H))\O0

T is a maximal decreasing well-ordered chain}

Theorem (Farah—Weaver)

Assume 0 < t*.1 Then there exists a maximal proper filter in
P(C(H)) that is not diagonalized by any atomic masa.

1CH would do; d <‘the Novak number of P(C(H))' is best if it makes sense



Pf. By 0 < t*, we may choose F so that 7 NID; # ) for all (.7)
Given (&k), pick (Jp) such that & € Jp) U Jp(k)+1 for all k. Let

Ai={k|n(k) mod4=i}

for 0 <j < 4. B
If g € FNDy, then [|P$)qll < 1for 0 < i< 4. O

Corollary (Akemann-Weaver, 2006)

CH implies there is a pure state that is not multiplicative on any

atomic masa. L]



An extra: Reid’s theorem

An ultrafilter U on N is a Q-point if every partition of N into finite
intervals has a transversal in U.

Recall P)(f) = Px = Proj%{enMex}'
Theorem (Reid)

IfU is a Q-point then vy | A®) has the unique extension to a
pure state of B(H).



Proof of Reid's theorem

Fix a pure state extension ¢ of ¢y [ A) and a € B(H).
Fix finite intervals (J;) such that N =J,, J, and

1PsmaPy, | <27m"
whenever |[m — n| > 2 and let X € U be such that
XN (hiUhiv1) ={n(i)}

for all /.



Then with Q; = P,y and f; = ey(j) we have p(3_; Q;) =1 and

QaQ = Z o,az Q= Z QiaQi+ > Qraq;.

i#
The second summand is compact, and
QiaQ; = (afi|fi)f;
therefore if a = lim;_y(afi|f;) we have

lim (PXaPX - Oqu) =0
X—-U

and ¢(a) = a.
Hence ¢(a) = ¢u(a) for all a.
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