Operator algebras and set theory

Ilijas Farah

York University

Carnegie Mellon, February 9, 2008

H: a complex, infinite-dimensional Hilbert space
(e_n): an orthonormal basis of H

$$(\xi|\eta)$$
: the inner product on H
 $\|\xi\| = \sqrt{(\xi|\overline{\xi})}$
a: $H \to H$: a linear operator
 $\|a\| = \sup\{\|a\xi\| \mid \xi \in H, \|\xi\| = 1\}$
a is bounded if $\|a\| < \infty$.
 $(\mathcal{B}(H), +, \cdot, ^*, \|\cdot\|)$: the algebra of all bounded operators on H.
The adjoint, a^* , is defined implicitly by
 $(a^*\xi|\eta) = (\xi|a\eta)$

for all ξ, η in H.

Lemma

For all a, b we have

- 1. $(a^*)^* = a$, 2. $||a|| = ||a^*||$,
- 3. $||ab|| \le ||a|| \cdot ||b||$,
- 4. $||aa^*|| = ||a||^2$.

Hence $\mathcal{B}(H)$ is a Banach algebra with involution. (4) is the "C* equality."

Example If $H = L^2(X, \mu)$ and $f: X \to \mathbb{C}$ is bounded and measurable, then $H \ni g \mapsto m_f(g) = fg \in H$

is a bounded linear operator. We have $||m_f|| = ||f||_{\infty}$ and

$$m_f^* = m_{\overline{f}}.$$

Hence $m_f^* m_f = m_f m_f^* = m_{|f|^2}$.

An operator *a* is *normal* if $aa^* = a^*a$. If $\Phi: H_1 \to H_2$ is an isomorphism between Hilbert spaces, then

$$a \mapsto \operatorname{Ad} \Phi(a) = \Phi a \Phi^{-1}$$

is an isomorphism between $\mathcal{B}(H_1)$ and $\mathcal{B}(H_2)$.

Theorem (Spectral Theorem)

If a is a normal operator then there is a finite measure space (X, μ) , a measurable function f on X, and a Hilbert space isomorphism $\Phi: L^2(X, \mu) \to H$ such that $\operatorname{Ad} \Phi m_f = a$.

An operator is *self-adjoint* if $a = a^*$. For any $b \in \mathcal{B}(H)$ we have

$$b=b_0-ib_1,$$

with both $b_0 = (b + b^*)/2$ and $b_1 = i(b^* - b)/2$ self-adjoint. Fact a is self-adjoint iff $(a\xi|\xi)$ is real for all ξ .

$$Pf. \\ ((a-a^*)\xi|\xi) = (a\xi|\xi) - (a^*\xi|\xi) = (a\xi|\xi) - (\xi|a\xi) = (a\xi|\xi) - \overline{(a\xi|\xi)}.$$

An operator *b* such that $(b\xi|\xi) \ge 0$ for all $\xi \in H$ is *positive*. Example $m_f \ge 0$ iff $\nu\{x \mid f(x) < 0\} = 0$. For any self-adjoint $a \in \mathcal{B}(H)$ we have $a = a_0 - a_1$, with both a_0 and a_1 positive. (Hint: spectral theorem.)

Lemma

b is positive iff $b = a^*a$ for some (non-unique) a.

Proof. (\Leftarrow) $(a^*a\xi|\xi) = (a\xi|a\xi) \ge 0$. (\Rightarrow) If *b* is positive, by the spectral theorem we may assume $b = m_f$ for $f \ge 0$. Let $a = m_{\sqrt{f}}$.

A $p \in \mathcal{B}(H)$ is a projection if $p^2 = p^* = p$.

Lemma

p is a projection iff it is an orthogonal projection to a closed subspace of *H*.

Pf. We have $p = m_f$ and $f = f^2 = \overline{f}$. Hence $f(x) \in \{0, 1\}$ for almost all x, and $m_f = \text{proj}_{\{g|\text{supp}(g) \subseteq Y\}}$ with $Y = f^{-1}(\{1\})$. \Box

I is the identity operator on *H*. An operator *u* is *unitary* if $uu^* = u^*u = I$. An operator *v* is a *partial isometry* if

$$p = vv^*$$
 and $q = v^*v$

are both projections.

Example

A partial isometry that is not a normal operator. Let (e_n) be the orthonormal basis of H. The unilateral shift S is defined by

$$S(e_n) = e_{n+1}$$
 for all n .

Then $S^*(e_{n+1}) = e_n$ and $S^*(e_0) = 0$.

$$S^*S = I
eq \mathsf{proj}_{\overline{\mathsf{Span}}\{e_n \mid n \geq 1\}} = SS^*.$$

We have an analogue of $z = re^{\theta}$ for complex numbers. Theorem (Polar Decomposition) Every a in $\mathcal{B}(H)$ can be written as

$$a = bv$$

where b is positive and v is a partial isometry.

This does not mean that understanding arbitrary operators reduces to understanding self-adjoints and partial isometries.

Problem

Does every $a \in \mathcal{B}(H)$ have a nontrivial closed invariant subspace? The answer is easily positive for all normal operators and all partial isometries. I is the identity operator on H.

Definition (Spectrum)

$$\sigma(a) = \{\lambda \in \mathbb{C} \mid a - \lambda I \text{ is not invertible} \}.$$

Lemma

- 1. $\sigma(a)$ is always a compact subset of \mathbb{C} .
- 2. $\sigma(a^*) = \{\overline{\lambda} \mid \lambda \in \sigma(a)\}.$
- 3. a is self-adjoint iff $\sigma(a) \subseteq \mathbb{R}$.
- 4. a is positive iff $\sigma(a) \subseteq [0,\infty)$.

Concrete and abstract C* algebras

Definition (Concrete C* algebras)

If $X \subseteq \mathcal{B}(H)$ let $A = C^*(X)$ be the smallest norm-closed subalgebra of $\mathcal{B}(H)$.

Definition

A is an abstract C* algebra if it is a Banach algebra with involution such that $||aa^*|| = ||a||^2$ for all a.

Example

X is a locally compact Hausdorff space.

 $C_0(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous and vanishes at } \infty\}.$

$$f^* = \overline{f}.$$

 $\begin{array}{ll} C_0(X) \text{ is abelian, in particular each operator is normal.} \\ f \text{ is self-adjoint} & \text{iff} & \text{the range}(f) \subseteq \mathbb{R}. \\ f \text{ is positive} & \text{iff} & \text{range}(f) \subseteq [0, \infty). \\ f \text{ is a projection} & \text{iff} & f^2(x) = f(x) = \overline{f(x)} \\ & \text{iff} & \text{range}(f) \subseteq \{0, 1\} \\ & \text{iff} & f = \chi_U \text{ for a clopen } U \subseteq X. \\ \text{If } X \text{ is compact then } C_0(X) = C(X) \text{ has the identity, and we have} \end{array}$

 $\sigma(f) = \operatorname{range}(f).$

Example

 $\begin{array}{ll} M_n: n \times n \ complex \ matrices. \ M_n \cong \mathcal{B}(\ell_2^n). \\ adjoint, \ unitary: \ the \ usual \ meaning. \\ self-adjoint: \ hermitian. \\ positive: \ positively \ definite. \\ \sigma(a): \ the \ set \ of \ eigenvalues. \\ spectral \ theorem: \ spectral \ theorem. \\ (normal \ matrices \ are \ diagonalizable) \end{array}$

The algebra of compact operators,

$$\mathcal{K}(H) = C^*(\{a \in \mathcal{B}(H) \mid a[H] \text{ is finite-dimensional}\}).$$
$$= \{a \in \mathcal{B}(H) \mid a[\text{unit ball}] \text{ is compact}\}$$

Fact If $r_n = \text{proj}_{\overline{\text{Span}}\{e_j | j \le n\}}$ TFAE 1. $a \in \mathcal{K}(H)$, 2. $\lim_n ||a(I - r_n)|| = 0$, 3. $\lim_n ||(I - r_n)a|| = 0$. Note: if a is self-adjoint then

$$||a(I-r_n)|| = ||(a(I-r_n))^*|| = ||(I-r_n)a||.$$

 $\mathcal{K}(H)$ is an ideal of $\mathcal{B}(H)$ (closed, two-sided, self-adjoint ideal). The quotient $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ is the *Calkin algebra*. $\pi: \mathcal{B}(H) \to \mathcal{C}(H)$ is the quotient map. $\sigma(\pi(a)) = \sigma_e(a)$: the essential spectrum of *a*. Here $\sigma_e(a) =$ the set of all accumulation points of $\sigma(a)$

plus all points of $\sigma(a)$ of infinite multiplicity

Direct (inductive) limits

If Ω is a directed set, A_i , $i \in \Omega$ are C* algebras and

$$\varphi_{i,j} \colon A_i \to A_j \qquad \text{for } i < j$$

is a commuting family of *-homomorphisms, define the direct limit

$$A=\varinjlim_i A_i.$$

For $a \in A_i$ let

$$\|a\| = \lim_{i} \|\varphi_{i,j}(a)\|_{A_j}$$

and take the completion.

Example

The CAR (Canonical Anticommutation Relations) algebra (aka the Fermion algebra, aka $M_{2^{\infty}}$ UHF algebra).

$$\Phi_n\colon M_{2^n}\to M_{2^{n+1}}$$

$$\Phi_n(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}.$$

FDD algebras

If (E_n) is an orthogonal decomposition of H into finite-dimensional subspaces then

$$\mathcal{D}[ec{E}] = \{ a \in \mathcal{B}(H) \mid each E_n ext{ is } a ext{-invariant} \}$$

If $ec{E}$ refines $ec{F}$, then $\mathcal{D}[ec{E}] < \mathcal{D}[ec{F}]$.

Fact The unilateral shift S does not belong to $\mathcal{D}[\vec{E}]$ for any \vec{E} .

Pf. Some a is Fredholm if its Fredholm index

 $index(a) = dim ker(a) - dim ker(a^*)$

is finite. If $a \in \mathcal{D}[\vec{E}]$ is Fredholm then index(a) = 0. However, index(S) = -1. \Box

Lemma If $a \in \mathcal{B}(H)$ is normal then

$$C^*(a,I)\cong C(\sigma(a)).$$

For every $f : \sigma(a) \to \mathbb{C}$ we can define $f(a) \in C^*(a, I)$. For example:

$$\mathsf{a} = \frac{|\mathsf{a}| + \mathsf{a}}{2} - \frac{|\mathsf{a}| - \mathsf{a}}{2}$$

If $a \ge 0$, then \sqrt{a} is defined.

Unital algebras

A C* algebra is *unital* if it has a unit (multiplicative identity).

Lemma

Every C* algebra A is contained in a unital C* algebra $\tilde{A} \cong A \oplus \mathbb{C}$.

We call \tilde{A} the *unitization* of A.

If A < B we say A is a *unital subalgebra* of B if both B is unital and its unit belongs to A. If $a \in A$ and A is unital, one could define

 $\sigma_A(a) = \{\lambda \in \mathbb{C} \mid a - \lambda I \text{ is not invertible}\}.$

Lemma

Assume A is a unital subalgebra of B and $a \in A$. Then $\sigma_A(a) = \sigma_B(a)$.

Lemma

Every *-homomorphism Φ between C* algebras is continuous.

Pf. We prove Φ is a contraction. Note that $\sigma(\Phi(a)) \subseteq \sigma(a)$. Thus for *a* normal

$$egin{array}{l} |a\| = \sup\{|\lambda| \mid \lambda \in \sigma(a)\} \ \geq \sup\{|\lambda| \mid \lambda \in \sigma(\Phi(a))\} \ = \|\Phi(a) \end{array}$$

For general *a* we have

$$\|a\| = \sqrt{\|aa^*\|} \ge \sqrt{\|\Phi(aa^*)\|} = \|\Phi(a)\|_{A^*}$$

Theorem (Gelfand–Naimark)

Every commutative C^* -algebra is isomorphic to $C_0(X)$ for some locally compact Hausdorff space X. If it is moreover unital, then X can be chosen to be compact.

Theorem (Gelfand–Naimark–Segal)

Every C*-algebra A is isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

A continuous linear functional $\varphi \colon A \to \mathbb{C}$ is *positive* if $\varphi(a) \ge 0$ for all positive *a*. It is a *state* if $\varphi(I) = 1$. $\mathbb{S}(A)$ is the space of all states on *A*. If ξ is a unit vector, define a functional ω_{ξ} on $\mathcal{B}(H)$ by

$$\omega_{\xi}(a) = (a\xi|\xi).$$

Then $\omega_{\xi}(a) \ge 0$ for a positive *a* and $\omega_{\xi}(I) = 1$; hence it is a state. States form a weak*-compact convex subset of *A**. Cauchy–Schwartz for states:

$$|\varphi(a^*b)|^2 \leq \varphi(a^*a)\varphi(b^*b).$$

Theorem (GNS)

Assume φ is a state on A. There is a representation $\pi_{\varphi} \colon A \to \mathcal{B}(H_{\varphi})$ and a unit vector $\xi = \xi_{\varphi}$ in H_{φ} such that

$$\varphi(a) = \omega_{\xi}(a)$$

for all a.

Proof. On $A \times A$ let

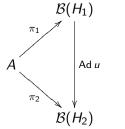
$$(a|b)=arphi(b^*a).$$

 $J_arphi=\{a\midarphi(a^*a)=0\}$
 $H_arphi=\widetilde{A/J}$

 $\pi_{\varphi}(a)$ sends $[b]_{J_{\varphi}}$ to $[ab]_{J_{\varphi}}$.

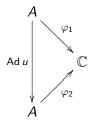
The space of states on A

 $\pi_1 \sim \pi_2$ if $\exists u \colon H_1 \to H_2$ such that



$$\operatorname{Ad} u(a) = uau^*$$

 $\varphi_1 \sim \varphi_2$ if and only if $\exists u \in A$ such that



Theorem For φ_1, φ_2 in $\mathbb{S}(A)$ we have $\varphi_1 \sim \varphi_2 \Leftrightarrow \pi_{\varphi_1} \sim \pi_{\varphi_2}$.

Lemma

If $\|\varphi\| = 1$ then φ is a state iff $\varphi(I) = 1$. A state φ is pure iff

$$arphi = t\psi_0 + (1-t)\psi_1, \qquad 0 \le t \le 1$$

for some states ψ_0 , ψ_1 implies $\varphi = \psi_0$ or $\varphi = \psi_1$. $\mathbb{P}(A)$ is the space of all pure states of A.

Example

If A = C(X), then (by Riesz) φ is a state iff $\varphi(f) = \int f d\mu$ for some Borel probability measure μ .

Lemma

For a state φ of C(X) TFAE:

- 1. φ is pure,
- 2. for some $x_{\varphi} \in X$ we have $\varphi(f) = f(x_{\varphi})$
- 3. $\varphi \colon C(X) \to \mathbb{C}$ is a *-homomorphism.

If $\xi \in H$ is a unit vector, then

$$\omega_{\xi}(a) = (a\xi|\xi)$$

is a vector state. All vector states are pure.

Definition Some $\varphi \in S(\mathcal{B}(H))$ is singular if $\varphi[\mathcal{K}(H)] = \{0\}$.

Theorem

Each state of $\mathcal{B}(H)$ is a weak*-limit of vector states.

Fix a free ultrafilter ${\mathcal U}$ on ${\mathbb N}.$ Then

$$arphi_{\mathcal{U}}^{(ec{e})}(a) = \lim_{n
ightarrow \mathcal{U}} (ae_n | e_n)$$

is a singular state. A state of the form $\varphi_{\mathcal{U}}^{(\vec{\xi})}$ is diagonalized. Theorem (Anderson, 1977) Each $\varphi_{\mathcal{U}}^{(\vec{e})}$ is pure.

Conjecture (Anderson, 1977)

Every pure state on $\mathcal{B}(H)$ can be diagonalized.

The lattice of projections

Let p, q be projections in $\mathcal{B}(H)$. Define $p \leq q$ if pq = p.

Fact

$$pq = p$$
 iff $qp = p$.

Proof.

Since $p = p^*$, pq = p implies $pq = (pq)^* = q^*p^* = qp$. Note that pq = qp if and only if pq is a projection. $p \land q$: the projection to range $(p) \cap$ range(q) $p \lor q$: the projection to $\overline{\text{Span}}(\text{range}(p) \cup \text{range}(q))$.

Lemma The projections in $\mathcal{B}(H)$ form a lattice with respect to $\land, \lor, \leq, I, 0.$

Lemma $\mathcal{B}(H) = C^*(\mathcal{P}(\mathcal{B}(H)))$. That is, $\overline{\text{Span}} \mathcal{P}(\mathcal{B}(H))$ is norm-dense in $\mathcal{B}(H)$.

Lifting elements in the Calkin algebra

 $\mathcal{K}(H)$ is a (self-adjoint, norm closed, two-sided) ideal of $\mathcal{B}(H)$. $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ is the *Calkin algebra*. $\pi : \mathcal{B}(H) \to \mathcal{C}(H)$ is the quotient map.

If **a** is self-adjoint in C(H), then $\mathbf{a} = \pi(\mathbf{a})$ for a self-adjoint \mathbf{a} in C(H).

Pf. Fix any a_0 such that $\pi(a_0) = \mathbf{a}$. Let $a = (a_0 + a_0^*)/2$. \Box

If **p** is a projection in C(H), then $\mathbf{p} = \pi(p)$ for a projection p in C(H).

Pf. Fix a self-adjoint *a* such that $p = \pi(a)$. There are (X, μ) and $f \in L^{\infty}(X, \mu)$ and a Hilbert space isomorphism $\Phi \colon L^{2}(X, \mu) \to H$ such that $\Phi(m_{f}) = a$. Let

$$h(x) = \begin{cases} 1, & f(x) \ge 1/2 \\ 0, & f(x) < 1/2. \end{cases}$$

Then m_h is a projection and $\pi(m_h) = \pi(m_f)$. \Box

There is a normal (even a unitary) operator in C(H) that is distinct from $\pi(v)$ for any normal v in $\mathcal{B}(H)$.

Pf. The image **S** of the unilateral shift is a unitary in C(H), since $\mathbf{S}^*\mathbf{S} = I = \mathbf{SS}^*$. If v - S is compact then v is Fredholm, and index(v) = -1.

General spectral theorem

Theorem (Spectral Theorem)

If A is an abelian C*-subalgebra of $\mathcal{B}(H)$ then there is a finite measure space (X, μ) , a subalgebra B of $L^{\infty}(X, \mu)$, and a Hilbert space isomorphism $\Phi: L^2(X, \mu) \to H$ such that $\Phi[B] = A$.

The atomic masa

MASA: MAximal Self-Adjoint SubAlgebra. Fix H and its orthonormal basis (e_n) .

> $(\alpha_n) \in \ell^{\infty}$ $\sum_n \alpha_n P_{\mathbb{C}e_n} \in \mathcal{B}(H).$

Lemma $\mathcal{A}^{(\vec{e})} = \{\sum_{n} \alpha_{n} P_{\mathbb{C}e_{n}}\}$ is a masa in $\mathcal{B}(H)$.

Embedding $\mathcal{P}(\mathbb{N})$ into $\mathcal{P}(\mathcal{B}(H))$

$$egin{aligned} X \in \mathcal{P}(\mathbb{N}) \ P_X^{(ec{e})} = P_X = \mathsf{proj}_{\overline{\mathsf{Span}}\{e_n \mid n \in X\}} \end{aligned}$$

$$\mathcal{P}(\mathbb{N}) \ni X \mapsto P_X \in \mathcal{P}(\mathcal{B}(H)).$$

Hence $\mathcal{P}(\mathbb{N})$ is a maximal Boolean subalgebra of $\mathcal{P}(\mathcal{B}(\mathcal{H}))$.

Atomless masa

 $L^{\infty}(\mu)$ is also a masa in $\mathcal{B}(L^{2}(\mu))$ for a diffused measure μ . Fact $\mathcal{P}(L^{\infty}(\mu))$ is a maximal Boolean subalgebra of $\mathcal{P}(\mathcal{B}(H))$ isomorphic to the Lebesgue measure algebra, Borel/Null. Theorem (Johnson–Parrott) If A is a masa in $\mathcal{B}(H)$ then $\pi[A]$ is a masa in $\mathcal{C}(H)$. For the atomic masa A we have

 $\mathcal{A}/\mathcal{K}(H) \approx \ell^{\infty}/c_0.$

$$\mathcal{P}(\mathbb{N})/\operatorname{Fin} \ni [A] \mapsto [P_A] \in \mathcal{P}(\ell^{\infty}/c_0).$$

Both $\mathcal{P}(\mathbb{N})/$ Fin and the Lebesgue measure algebra are maximal boolean subalgebras of $\mathcal{P}(\mathcal{C}(H))$.

For projections p and q in $\mathcal{B}(H)$ TFAE

1.
$$\pi(p) \le \pi(q)$$
,

2.
$$q(I - p)$$
 is compact,

3. $(\forall \varepsilon > 0)(\exists p_0 \le l - p) p_0$ is finite-dimensional and $\|q(l - p - p_0)\| < \varepsilon$.

We write $p \leq_{\mathcal{K}} q$ if the conditions of Lemma 23 are satisfied.

Corollary

The poset $(\mathcal{P}(\mathcal{C}(H)), \leq)$ is isomorphic to the quotient $(\mathcal{P}(\mathcal{B}(H)), \leq_{\mathcal{K}})$. Let's write $\dot{p} = \pi(p)$. Proposition (Weaver) $\mathcal{P}(\mathcal{C}(H))$ is not a lattice.

Proof.

Enumerate a basis of *H* as ξ_{mn} , η_{mn} for *m*, *n* in \mathbb{N} .

$$\zeta_{mn} = \frac{1}{n} \xi_{mn} + \frac{\sqrt{n-1}}{n} \eta_{mn}$$

$$\begin{split} \mathcal{K} &= \overline{\operatorname{Span}}\{\xi_{mn} \mid m, n \in \mathbb{N}\}, \qquad p = \operatorname{proj}_{\mathcal{K}} \\ L &= \overline{\operatorname{Span}}\{\zeta_{mn} \mid m, n \in \mathbb{N}\}, \qquad q = \operatorname{proj}_{L} \end{split}$$
 For $f \in \mathbb{N}^{\mathbb{N}}$ let $M(f) = \overline{\operatorname{Span}}\{\xi_{mn} \mid m \leq f(n)\}, \quad r(f) = \operatorname{proj}_{M(f)}. \end{split}$

Fact

1. $r(f) \leq p$ for all f, 2. $r(f) \leq q$ for all f, 3. if $r \leq_{\mathcal{K}} p$ and $r \leq_{\mathcal{K}} q$ then $r \leq_{\mathcal{K}} r(f)$ for some f.

Cardinal invariants

Recall

 $\mathfrak{a} = \min\{|\mathbb{A}| \mid \mathbb{A} \text{ is a maximal infinite antichain in } \mathcal{P}(\mathbb{N})/\operatorname{Fin}\}.$

Definition (Wofsey, 2006) A family $\mathbb{A} \subseteq \mathcal{P}(\mathcal{B}(H))$ is almost orthogonal (aof) if pq is compact for $p \neq q$ in \mathbb{A} .

 $\mathfrak{a}^* = \min\{|\mathbb{A}| \mid \mathbb{A} \text{ is a maximal infinite aof}\}$

Theorem (Wofsey, 2006)

- 1. It is relatively consistent with ZFC that $\aleph_1 = \mathfrak{a} = \mathfrak{a}^* < 2^{\aleph_0}$,
- 2. *MA* implies $a^* = 2^{\aleph_0}$.

Question

Is $\mathfrak{a} = \mathfrak{a}^*$? Is $\mathfrak{a} \ge \mathfrak{a}^*$? Is $\mathfrak{a}^* \ge \mathfrak{a}$?

It may seem obvious that $\mathfrak{a} \geq \mathfrak{a}^*$?

Definition/Theorem (Solecki, 1995)

An ideal J on \mathbb{N} is an analytic P-ideal if there is a lower semicontinuous (lsc) submeasure φ on \mathbb{N} such that

$$J = \{X \mid \limsup_{n} \varphi(X \setminus n) = 0\}.$$

Lemma (Steprāns, 2007) Fix $a \in \mathcal{B}(H)$. Then

$$J_{\mathsf{a}} = \{X \subseteq \mathbb{N} \mid \mathsf{aP}_X^{(ec{e})} ext{ is compact}\}$$

is an analytic P-ideal.

Pf. Let $\varphi_a(X) = ||P_Xa||$. P_Xa is compact iff $\lim_n \varphi_a(X \setminus n) = 0$. \Box

Proposition (Wofsey, 2006)

There is a mad family $\mathbb{A} \subseteq \mathcal{P}(\mathbb{N})$ whose image in $\mathcal{P}(\mathcal{B}(H))$ is not a maof.

Proof.

Let $\xi_n = 2^{-n/2} \sum_{j=2^n}^{2^{n+1}-1} e_j$ and $q = \operatorname{proj}_{\overline{\operatorname{Span}}\{\xi_n\}}$. Then $\lim_n ||qe_n|| = 0$ hence J_q is a *dense* ideal: every infinite subset of \mathbb{N} has an infinite subset in J_q . Let \mathbb{A} be a mad family contained in J_q . Then q is almost orthogonal to all P_X , $X \in \mathbb{A}$.

$$\mathfrak{a}' = \min\{|\mathbb{A}| \mid \mathbb{A} \text{ is mad and } \mathbb{A} \not\subseteq J$$

for any analytic P-ideal $J\}$

Fact

$$\mathfrak{a}' \geq \mathfrak{a}, \ \mathfrak{a}' \geq \mathfrak{a}^*.$$

One can define $\mathfrak{p}^*, \mathfrak{t}^*, \mathfrak{b}^*, \ldots$

Theorem (Hadwin, 1988)

CH implies that any two maximal chains of projections in C(H) are order-isomorphic.

Conjecture (Hadwin, 1988)

CH is equivalent to 'any two maximal chains in $\mathcal{P}(\mathcal{C}(H))$ are order-isomorphic.'

Theorem (Wofsey, 2006)

There is a forcing extension in which there are maximal chains in $\mathcal{P}(\mathcal{C}(H))$ of different cofinalities (and $2^{\aleph_0} = \aleph_2$).

Theorem (essentially Shelah–Steprāns)

There is a model of $\neg CH$ in which all maximal chains in $\mathcal{P}(\mathbb{N})/F$ in are isomorphic.

A twist of projections

Consider

 $l = \min\{|A| \mid A \text{ is a family of commuting projections in } C(H)\}$ that cannot be lifted to a family of commuting projections of $\mathcal{B}(H)$

Lemma

 $\mathfrak{l} > \aleph_0.$

Proposition (Farah, 2006)

 $l = \aleph_1$: There are commuting projections p_{ξ} , $\xi < \omega_1$, in C(H) that cannot be lifted to commuting projections of $\mathcal{B}(H)$.

Pf. Construct p_{ξ} in $\mathcal{P}(\mathcal{B}(H))$ so that for $\xi \neq \eta$:

- 1. $p_{\xi}p_{\eta}$ is compact, and
- 2. $\|[p_{\xi}, p_{\eta}]\| > 1/4$

If (e_n) diagonalizes each p_{ξ} , fix $X(\xi) \subseteq \mathbb{N}$ such that

$$d_{\xi}=p_{\xi}-P_{X(\xi)}^{(ec{e})}$$

is compact. Let

$$r_n = P_{\{0,1,\dots,n-1\}}^{(\vec{e})}.$$

Then a is compact iff $\lim_n ||a(I - r_n)|| = 0$. Fix \bar{n} such that $||d_{\xi}(I - r_{\bar{n}})|| < 1/8$ for uncountably many ξ . If $||(d_{\xi} - d_{\eta})||r_{\bar{n}}|| < 1/8$, then

$$\|[p_{\xi}, p_{\eta}]\| \le \|[P_{X(\xi)}, P_{X(\eta)}]\| + \frac{1}{4} = \frac{1}{4}$$

a contradiction. 🗆

Automorphisms of C* algebras

Ad $u(a) = uau^*$.

An automorphism Φ is *inner* if $\Phi = \operatorname{Ad} u$ for some unitary u.

Lemma

If A is abelian then id is its only inner automorphisms. If A = C(X) then each automorphism is of the form

 $f\mapsto f\circ \Psi$

for an autohomeomorphism Ψ of X.

All automorphisms of $\mathcal{B}(H)$ are inner. Hence all automorphisms of any M_n are inner.

Lemma

The CAR algebra $(M_{2^{\infty}} = \bigotimes_n M_2)$ has outer automorphisms.

$$Pf. \ \Phi = \bigotimes_{n} \operatorname{Ad} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ is outer since } \bigotimes_{n} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ is not in } M_{2^{\infty}}.$$

Extending pure states

Lemma

If A is a unital subalgebra of B then

- 1. The restriction of a state of B to A is a state of A.
- 2. Every (pure) state of A can be extended to a (pure) state of B.
- *Pf.* (2) By Hahn–Banach $\{\psi \in B^* \mid \psi \upharpoonright A = \varphi, \|\psi\| = 1\}$ is nonempty and by Krein–Milman it has an extreme point. \Box

Example

Restriction of a pure state to a unital subalgebra need not be pure. If ω_{ξ} is a vector state of $\mathcal{B}(H)$ and \mathcal{A} is the atomic masa diagonalized by (e_n) , then $\omega_{\xi} \upharpoonright \mathcal{A}$ is pure iff $|(\xi|e_n)| = 1$ for some n.

Proposition

Assume A < B and B is abelian. If every pure state of A extends to the unique pure state of B, then A = B.

Proof. A < C(X) separates points of X. Use Stone–Weierstrass. Problem (Noncommutative Stone–Weierstrass problem)

Assume A < B and A separates $\mathcal{P}(B) \cup \{0\}$. Does necessarily A = B?

A C* algebra is *simple* if and only if it has no (closed, two-sided, self-adjoint) nontrivial ideals.

Lemma (Akemann–Weaver)

Assume A is a simple separable unital C* algebra and φ and ψ are its pure states. Then there is a simple separable unital B > A such that

- 1. φ and ψ extend to pure states $\varphi'\text{, }\psi'$ of B in a unique way.
- 2. φ' and ψ' are equivalent.

Pure states on $M_{2^{\infty}}$

On *M*₂:

$$\varphi_1 : \qquad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto a_{11}$$

$$\varphi_2 : \qquad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto a_{22}$$

For $f \in 2^{\mathbb{N}}$

$$\varphi_f = \bigotimes_n \varphi_{f(n)}$$

is in $\mathbb{P}(M_{2^{\infty}})$. In $M_{2^{\infty}}$, $\varphi_f \sim \varphi_g$ iff $\{n \mid f(n) \neq g(n)\}$ is finite. Fact

If $f \neq g$ then $\|\varphi_f - \varphi_g\| = 2$.

Type I algebras

Definition (Kaplansky)

A C* algebra A is of type I if for every irreducible representation $\pi: A \to \mathcal{B}(H)$ we have $\pi[A] \supseteq \mathcal{K}(H)$.

[Not to be confused with type I von Neumann algebras: $\mathcal{B}(H)$ is a type I von Neumann algebra and a non-type-I C* algebra.] A C* algebra is *simple* if and only if it has no (closed, two-sided, self-adjoint) nontrivial ideals.

Lemma

A type I C* algebra has only one irrep up to equivalence if and only if it is isomorphic to $\mathcal{K}(H)$ for some H.

Theorem (Glimm)

If A is a non-type-I C* algebra then there is B < A that has a quotient isomorphic to $M_{2^{\infty}}$.

Corollary (Akemann-Weaver, 2002)

If A is non-type-I and has a dense subset of cardinality $<2^{\aleph_0}$, then A has nonequivalent pure states.

Proof.

There are pure states φ_f , $f \in 2^{\mathbb{N}}$, such that if $f \neq g$ and Ad $u\varphi_f = \operatorname{Ad} v\varphi_g$ then $||u - v|| \ge 1$.

Naimark's problem

```
Theorem (Naimark, 1948)
Any two irreps of \mathcal{K}(H) are equivalent.
Question (Naimark, 1951)
Is the converse true?
Theorem (Akemann–Weaver, 2002)
```

Assume \Diamond . Then Naimark's problem has a negative solution.

Proof: \diamondsuit and Naimark

Fix $h_{\alpha} \colon \alpha \to \omega_1$ such that for every $g \colon \omega_1 \to \omega_1$ the set $\{\alpha \mid g \upharpoonright \alpha = h_{\alpha}\}$ is stationary. Find an increasing chain of simple separable unital C* algebras A_{α} , $\alpha < \omega_1$ and pure state ψ_{α} of A_{α} so that

1. $\alpha < \beta$ implies $\psi_{\beta} \upharpoonright A_{\alpha} = \psi_{\alpha}$,

For each A_{α} , let $\{\varphi_{\alpha}^{\gamma} \mid \gamma < \omega_1\}$ enumerate all of its pure states. If α is limit, let

 $A_{\alpha} = \underset{\longrightarrow}{\lim} A_{\beta}.$

Now we consider the successor ordinal case, $\beta = \alpha + 1$. Assume there is $\varphi \in \mathbb{P}(A_{\alpha})$ such that $\varphi \upharpoonright A_{\beta} = \varphi_{\beta}^{h_{\alpha}(\beta)}$ for all $\beta < \alpha$. Using lemma, let $A_{\alpha+1}$ be such that ψ_{α} and φ have unique extensions to $A_{\alpha+1}$ that are equivalent.

Since $A = A_{\omega_1}$ is unital and infinite-dimensional, $A \ncong \mathcal{K}(H')$.

Fix $\varphi \in \mathbb{P}(A)$. Claim $\{\alpha \mid \varphi \upharpoonright A_{\alpha} \in \mathbb{P}(A_{\alpha}\} \text{ contains a club.}$

Proof. For $x \in A_{\omega_1}$ and $m \in \mathbb{N}$ $\{\alpha \mid \exists \psi_1, \psi_2 \in \mathbb{S}(A_{\alpha}), \varphi = \frac{1}{2}(\psi_1 + \psi_2) \text{ and } |\varphi(x) - \psi_1(x)| \ge \frac{1}{m}\}$

is bounded in ω_1 .

Fix $h: \omega_1 \to \omega_1$ so that

$$\varphi \restriction A_{\alpha} = \varphi_{\alpha}^{h(\alpha)}$$

for all α .

Let α be such that $h \upharpoonright \alpha = h_{\alpha}$. Then $\varphi \upharpoonright A_{\alpha+1}$ is equivalent to $\psi_{\alpha+1}$. Since $\psi_{\alpha+1}$ has unique extension to A_{ω_1} , so does φ and they remain equivalent.

Definition

A masa in $\mathcal{B}(H)$ has the extension property (EP) if each of its pure states extends uniquely to a pure state on $\mathcal{B}(H)$.

Every vector state has the unique extension to a pure state, hence this is a property of masas in the Calkin algebra.

- 1. Kadison-Singer, 1955: The atomless masa does not have the EP.
- 2. Anderson, 1974: CH implies there is a masa in the Calkin algebra with the EP.

Question (Kadison-Singer, 1955)

Does the atomic masa of $\mathcal{B}(H)$ have EP?

A positive answer is equivalent to an arithmetic statement, so let's go on.

Fix an orthonormal basis (e_n) of H, let A be the atomic masa diagonalized by (e_n) . Each pure state of A is of the form

$$\varphi_{\mathcal{U}}(a) = \lim_{n \to \mathcal{U}} (ae_n | e_n)$$

for an ultrafilter \mathcal{U} on \mathbb{N} . A state on $\mathcal{B}(H)$ of the form $\varphi_{\mathcal{U}}^{(\vec{\xi})}$ is *diagonalized (by* \mathcal{U} , (e_n)). Conjecture (Anderson) Every pure state φ of $\mathcal{B}(H)$ can be diagonalized. Recall that on an abelian C* algebra a state is pure iff it is multiplicative.

Conjecture (Kadison-Singer)

For every pure state φ of $\mathcal{B}(\mathcal{H})$ there is an atomic masa \mathcal{A} such that $\varphi \upharpoonright \mathcal{A}$ is multiplicative.

If $\varphi \upharpoonright \mathcal{A}$ is multiplicative, then there is an ultrafilter \mathcal{U} such that φ and $\varphi_{\mathcal{U}}$ agree on \mathcal{A} . We can conclude that $\varphi = \pi_{\mathcal{U}}$ if the answer to the Kadison–Singer problem is positive.

Theorem (Akemann–Weaver, 2005)

CH implies there is a pure state φ on $\mathcal{B}(H)$ that is not multiplicative on any atomic masa.

States are coded by 'noncommutative finitely additive measures.' Theorem (Gleason) Assume $\mu: \mathcal{P}(\mathcal{B}(H)) \rightarrow [0,1]$ is such that $\varphi(p+q) = \varphi(p) + \varphi(q)$ whenever pq = 0. Then there is a unique state φ on $\mathcal{B}(H)$ that extends μ .

Lemma

If φ is a state on A and p is a projection such that $\varphi(p) = 1$, then $\varphi(a) = \varphi(pap)$ for all a.

Proof. By Cauchy–Schwartz

$$|\varphi((I-p)a)| \leq \sqrt{\varphi(I-p)\varphi(a^*a)} = 0$$

since a = pa + (I - p)a we have $\varphi(a) = \varphi(pa)$, similarly $\varphi(pa) = \varphi(pap)$.

Definition

A family ${\mathbb F}$ of projections in a C* algebra is a filter if

- 1. for p, q in \mathbb{F} there is $r \in \mathbb{F}$ such that $r \leq p$ and $r \leq q$.
- 2. for $p \in \mathbb{F}$ and $r \ge p$ we have $r \in \mathbb{F}$.

A filter generated by $\mathbb{X} \subseteq \mathcal{P}(A)$ is the intersection of all filters containing \mathbb{X} .

A filter \mathcal{F} in $\mathcal{P}(\mathcal{C}(H))$ *lifts* if there is a commuting family \mathbb{X} in $\mathcal{P}(\mathcal{B}(H))$) that generates a filter \mathbb{F} such that $\pi[\mathbb{F}] = \mathcal{F}$. Note: If \mathcal{F} is a filter in $\mathcal{C}(H)$, then

$$\widetilde{\mathcal{F}} = \{ p \in \mathcal{P}(\mathcal{B}(\mathcal{H})) \mid \pi[p] \in \mathcal{F} \}$$

is not necessarily a filter.

Question

Does every maximal filter \mathcal{F} in $\mathcal{P}(\mathcal{C}(H))$ lift?

Theorem (Anderson)

There are a singular pure state φ of $\mathcal{B}(H)$, an atomic masa \mathcal{A}_1 , and an atomless masa \mathcal{A}_2 such that $\varphi \upharpoonright \mathcal{A}_j$ is multiplicative for j = 1, 2.

Lemma (Weaver, 2007) For $\tilde{\mathcal{F}}$ in $\mathcal{P}(\mathcal{B}(H))$ TFAE:

(A) $\|\mathbf{p}_1\mathbf{p}_2\dots\mathbf{p}_n\| = 1$ for any n-tuple of projections in $\tilde{\mathcal{F}}$ and \mathcal{F} is maximal with respect to this property.

(B) $(\forall \varepsilon > 0)$ for all finite $F \subseteq \widetilde{\mathcal{F}}$ there is a unit vector ξ such that

 $\|p\xi\| > 1 - \varepsilon$

for all $p \in F$.

Definition

A family $\tilde{\mathcal{F}}$ in $\mathcal{P}(\mathcal{B}(H))$ is a quantum filter if the conditions of Lemma 37 hold.

Theorem (Farah–Weaver, 2007) Assume $\mathcal{F} \subseteq \mathcal{P}(\mathcal{C}(H))$. TFAE: 1. \mathcal{F} is a maximal quantum filter, 2. $\mathcal{F} = \mathcal{F}_{\varphi} = \{\mathbf{p} \mid \varphi(p) = 1\}$ for some pure state φ .

Proof.

(1) implies (2). For a finite $F \subseteq \mathcal{F}$ and $\varepsilon > 0$ let

$$\mathcal{X}_{\mathcal{F},arepsilon} = \{ arphi \in \mathbb{S}(\mathcal{B}(\mathcal{H})) \mid arphi(p) \geq 1 - arepsilon ext{ for all } p \in \mathcal{F} \}.$$

If ξ is as in (B) then $\omega_{\xi} \in \mathcal{X}_{F,\varepsilon}$. Since $\mathcal{X}_{F,\varepsilon}$ is weak*-compact $\bigcap_{(F,\varepsilon)} \mathcal{X}_{F,\varepsilon} \neq \emptyset$. Any extreme point is a pure state.

(It can be proved that this intersection is a singleton.) (2) implies (1). If $\varphi(p_j) = 1$ for j = 1, ..., k, then $\varphi(p_1p_2...p_k) = 1$, hence (A) follows.

Lemma

Let (ξ_n) be an orthonormal basis. If for some n we have $\mathbb{N} = \bigcup_{j=1}^n A_j$ and there is $q \in \widetilde{\mathcal{F}}$ such that

$$\|P_{A_j}^{(ec{\xi})}q\|<1$$

for all j, then \mathcal{F} is not diagonalized by (ξ_n) .

Lemma

Assume (ξ_n) is an orthonormal basic sequence. There is a partition of \mathbb{N} into finite intervals (J_n) such that for all k

$$\xi_k \in \overline{\mathrm{Span}}\{e_i \mid i \in J_n \cup J_{n+1}\}$$

(modulo a small perturbation of ξ_k) for some n = n(k). For (J_n) as in Lemma 39 let

$$\mathbb{D}_{ec{j}} = \{ q \mid \| \mathcal{P}_{J_n \cup J_{n+1}}^{(ec{e})} q \| < 1/2 ext{ for all } n \}$$

Lemma

Each $\mathbb{D}_{\vec{J}}$ is dense in $\mathcal{P}(\mathcal{B}(H))$.

$$\begin{split} \mathfrak{d} &= \min\{|\mathbb{F}| \mid \mathbb{F} \subseteq \mathbb{N}^{\mathbb{N}} \text{ is } \leq \text{-cofinal}\}.\\ \mathfrak{t}^* &= \min\{|\mathbb{T}| \mid \mathbb{T} \subseteq \mathcal{P}(\mathcal{C}(\mathcal{H})) \setminus 0\\ & \mathbb{T} \text{ is a maximal decreasing well-ordered chain}\} \end{split}$$

Theorem (Farah–Weaver)

Assume $\mathfrak{d} \leq \mathfrak{t}^*$.¹ Then there exists a maximal proper filter in $\mathcal{P}(\mathcal{C}(H))$ that is not diagonalized by any atomic masa.

¹CH would do; $\mathfrak{d} <$ 'the Novák number of $\mathcal{P}(\mathcal{C}(H))$ ' is best if it makes sense

Pf. By $\mathfrak{d} \leq \mathfrak{t}^*$, we may choose \mathcal{F} so that $\mathcal{F} \cap \mathbb{D}_{\vec{j}} \neq \emptyset$ for all (\vec{J}) . Given (ξ_k) , pick (J_n) such that $\xi_k \in J_{n(k)} \cup J_{n(k)+1}$ for all k. Let

$$A_i = \{k \mid n(k) \mod 4 = i\}$$

for
$$0\leq i<$$
4.
If $q\in \mathcal{F}\cap\mathbb{D}_{ec{J}}$, then $\|\mathcal{P}_{A_i}^{(ec{\xi})}q\|<1$ for $0\leq i<$ 4. \Box

Corollary (Akemann-Weaver, 2006)

CH implies there is a pure state that is not multiplicative on any atomic masa.

An ultrafilter \mathcal{U} on \mathbb{N} is a *Q*-point if every partition of \mathbb{N} into finite intervals has a transversal in \mathcal{U} . Recall $P_X^{(\vec{e})} = P_X = \text{proj}_{\overline{\text{Span}}\{e_n | n \in X\}}$.

Theorem (Reid)

If \mathcal{U} is a Q-point then $\varphi_{\mathcal{U}} \upharpoonright \mathcal{A}^{(\vec{e})}$ has the unique extension to a pure state of $\mathcal{B}(H)$.

Proof of Reid's theorem

Fix a pure state extension φ of $\varphi_{\mathcal{U}} \upharpoonright \mathcal{A}^{(\vec{e})}$ and $a \in \mathcal{B}(H)$. Fix finite intervals (J_i) such that $\mathbb{N} = \bigcup_n J_n$ and

$$\|P_{J_m}aP_{J_n}\|<2^{-m-n}$$

whenever $|m - n| \ge 2$ and let $X \in \mathcal{U}$ be such that

$$X \cap (J_{2i} \cup J_{2i+1}) = \{n(i)\}$$

for all i.

Then with $Q_i = P_{n(i)}$ and $f_i = e_{n(i)}$ we have $\varphi(\sum_i Q_i) = 1$ and

$$QaQ = \sum_i Q_i a \sum_i Q_i = \sum_i Q_i a Q_i + \sum_{i
eq j} Q_i a Q_j.$$

The second summand is compact, and

$$Q_i a Q_i = (a f_i | f_i) f_i$$

therefore if $\alpha = \lim_{i \to U} (af_i | f_i)$ we have

$$\lim_{X \to \mathcal{U}} (P_X a P_X - \alpha P_X) = 0$$

and $\varphi(a) = \alpha$. Hence $\varphi(a) = \varphi_{\mathcal{U}}(a)$ for all a.