Operators on a complex Hilbert space

Operator algebras and set theory

Ilijas Farah

York University

Carnegie Mellon, February 9, 2008
H: a complex, infinite-dimensional Hilbert space

(e_n): an orthonormal basis of H

$(\xi|\eta)$: the inner product on H

$\|\xi\| = \sqrt{(\xi|\xi)}$

$a: H \to H$: a linear operator

$\|a\| = \sup\{\|a\xi\| \mid \xi \in H, \|\xi\| = 1\}$

a is bounded if $\|a\| < \infty$.

$(\mathcal{B}(H), +, \cdot, *, \| \cdot \|)$: the algebra of all bounded operators on H.

The adjoint, a^*, is defined implicitly by

$$(a^*\xi|\eta) = (\xi|a\eta)$$

for all ξ, η in H.
Lemma

For all a, b we have

1. $(a^*)^* = a$,
2. $\|a\| = \|a^*\|$,
3. $\|ab\| \leq \|a\| \cdot \|b\|$,
4. $\|aa^*\| = \|a\|^2$.

Hence $\mathcal{B}(H)$ is a Banach algebra with involution. (4) is the “C^* equality.”
Example

If $H = L^2(X, \mu)$ and $f : X \to \mathbb{C}$ is bounded and measurable, then

$$H \ni g \mapsto m_f(g) = fg \in H$$

is a bounded linear operator. We have $\|m_f\| = \|f\|_\infty$ and

$$m_f^* = m_f^*.$$

Hence $m_f^* m_f = m_f m_f^* = m|f|^2.$
An operator a is normal if $aa^* = a^*a$.

If $\Phi: H_1 \to H_2$ is an isomorphism between Hilbert spaces, then

$$a \mapsto \text{Ad } \Phi(a) = \Phi a \Phi^{-1}$$

is an isomorphism between $B(H_1)$ and $B(H_2)$.

Theorem (Spectral Theorem)

If a is a normal operator then there is a finite measure space (X, μ), a measurable function f on X, and a Hilbert space isomorphism $\Phi: L^2(X, \mu) \to H$ such that $\text{Ad } \Phi m_f = a$.
An operator is *self-adjoint* if \(a = a^* \). For any \(b \in \mathcal{B}(H) \) we have

\[
b = b_0 - ib_1,
\]

with both \(b_0 = (b + b^*)/2 \) and \(b_1 = i(b^* - b)/2 \) self-adjoint.

Fact

a is self-adjoint iff \((a\xi|\xi)\) is real for all \(\xi \).

Pf.

\[
((a - a^*)\xi|\xi) = (a\xi|\xi) - (a^*\xi|\xi) = (a\xi|\xi) - (\xi|a\xi) = (a\xi|\xi) - (\overline{a\xi|\xi}).
\]

\[\square\]
An operator b such that $(b\xi|\xi) \geq 0$ for all $\xi \in H$ is \textit{positive}.

Example

$m_f \geq 0$ \textit{iff} $\nu\{x \mid f(x) < 0\} = 0$.
For any self-adjoint \(a \in \mathcal{B}(H) \) we have \(a = a_0 - a_1 \), with both \(a_0 \) and \(a_1 \) positive. (Hint: spectral theorem.)

Lemma

\(b \) is positive iff \(b = a^* a \) for some (non-unique) \(a \).

Proof.

\((\Leftarrow)\) \((a^* a \xi | \xi) = (a \xi | a \xi) \geq 0 \).

\((\Rightarrow)\) If \(b \) is positive, by the spectral theorem we may assume \(b = m_f \) for \(f \geq 0 \). Let \(a = m \sqrt{f} \).

\(\square\)
A $p \in \mathcal{B}(H)$ is a projection if $p^2 = p^* = p$.

Lemma

p is a projection iff it is an orthogonal projection to a closed subspace of H.

Pf. We have $p = m_f$ and $f = f^2 = \bar{f}$. Hence $f(x) \in \{0, 1\}$ for almost all x, and $m_f = \text{proj}_{\{g | \text{supp}(g) \subseteq Y\}}$ with $Y = f^{-1}(\{1\})$. □
I is the identity operator on H.
An operator u is unitary if $uu^* = u^*u = I$.
An operator v is a partial isometry if

$$p = vv^* \text{ and } q = v^*v$$

are both projections.

Example

A partial isometry that is not a normal operator. Let (e_n) be the orthonormal basis of H. The unilateral shift S is defined by

$$S(e_n) = e_{n+1} \text{ for all } n.$$

Then $S^*(e_{n+1}) = e_n$ and $S^*(e_0) = 0$.

$$S^*S = I \neq \text{proj}_{\text{Span}\{e_n | n \geq 1\}} = SS^*.$$
We have an analogue of $z = re^{\theta}$ for complex numbers.

Theorem (Polar Decomposition)

Every a in $\mathcal{B}(H)$ can be written as

$$a = bv$$

where b is positive and v is a partial isometry.

This does not mean that understanding arbitrary operators reduces to understanding self-adjoints and partial isometries.

Problem

Does every $a \in \mathcal{B}(H)$ have a nontrivial closed invariant subspace?

The answer is easily positive for all normal operators and all partial isometries.
I is the identity operator on H.

Definition (Spectrum)

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid a - \lambda I \text{ is not invertible}\}.$$

Lemma

1. $\sigma(a)$ is always a compact subset of \mathbb{C}.
2. $\sigma(a^*) = \{ \overline{\lambda} \mid \lambda \in \sigma(a) \}$.
3. a is self-adjoint iff $\sigma(a) \subseteq \mathbb{R}$.
4. a is positive iff $\sigma(a) \subseteq [0, \infty)$.
Concrete and abstract C* algebras

Definition (Concrete C* algebras)
If $X \subseteq \mathcal{B}(H)$ let $A = C^*(X)$ be the smallest norm-closed subalgebra of $\mathcal{B}(H)$.

Definition
A is an abstract C* algebra if it is a Banach algebra with involution such that $\|aa^*\| = \|a\|^2$ for all a.
Example

X is a locally compact Hausdorff space.

$$C_0(X) = \{ f : X \to \mathbb{C} \mid f \text{ is continuous and vanishes at } \infty \}.$$

$f^* = \overline{f}$.

$C_0(X)$ is abelian, in particular each operator is normal.

- f is self-adjoint iff the range(f) $\subseteq \mathbb{R}$.
- f is positive iff range(f) $\subseteq [0, \infty)$.
- f is a projection iff $f^2(x) = f(x) = \overline{f(x)}$
 iff range(f) $\subseteq \{0, 1\}$
 iff $f = \chi_U$ for a clopen $U \subseteq X$.

If X is compact then $C_0(X) = C(X)$ has the identity, and we have

$$\sigma(f) = \text{range}(f).$$
Example

M_n: $n \times n$ complex matrices. $M_n \cong B(\ell^n_2).

- adjoint, unitary: the usual meaning.
- self-adjoint: hermitian.
- positive: positively definite.
- $\sigma(a)$: the set of eigenvalues.

(normal matrices are diagonalizable)
The algebra of compact operators,

\[\mathcal{K}(H) = C^*(\{a \in \mathcal{B}(H) \mid a[H] \text{ is finite-dimensional}\}) = \{a \in \mathcal{B}(H) \mid a[\text{unit ball}] \text{ is compact}\} \]

Fact

If \(r_n = \text{proj}_{\text{Span}\{e_j \mid j \leq n\}} \), TFAE

1. \(a \in \mathcal{K}(H) \),
2. \(\lim_n \|a(I - r_n)\| = 0 \),
3. \(\lim_n \|(I - r_n)a\| = 0 \).
Note: if a is self-adjoint then

$$\|a(I - r_n)\| = \|(a(I - r_n))^*\| = \|(I - r_n)a\|.$$

$\mathcal{K}(H)$ is an ideal of $\mathcal{B}(H)$ (closed, two-sided, self-adjoint ideal). The quotient $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ is the Calkin algebra. $\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$ is the quotient map.

$\sigma(\pi(a)) = \sigma_e(a):$ the essential spectrum of $a.$

Here

$\sigma_e(a) =$ the set of all accumulation points of $\sigma(a)$ plus all points of $\sigma(a)$ of infinite multiplicity
Direct (inductive) limits

If Ω is a directed set, A_i, $i \in \Omega$ are C*-algebras and

$$\varphi_{i,j} : A_i \rightarrow A_j \quad \text{for } i < j$$

is a commuting family of *-homomorphisms, define the direct limit

$$A = \lim_{\rightarrow} A_i.$$

For $a \in A_i$ let

$$\|a\| = \lim_i \|\varphi_{i,j}(a)\|_{A_j}$$

and take the completion.

Example

The CAR (Canonical Anticommutation Relations) algebra (aka the Fermion algebra, aka M_{2^∞} UHF algebra).

$$\Phi_n : M_{2^n} \rightarrow M_{2^{n+1}}$$

$$\Phi_n(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}.$$
If \((E_n)\) is an orthogonal decomposition of \(H\) into finite-dimensional subspaces then

\[
D[\vec{E}] = \{ a \in B(H) \mid \text{each } E_n \text{ is } a\text{-invariant} \}.
\]

If \(\vec{E}\) refines \(\vec{F}\), then \(D[\vec{E}] \subset D[\vec{F}]\).
Fact
The unilateral shift S does not belong to $\mathcal{D}[\vec{E}]$ for any \vec{E}.

Pf. Some a is Fredholm if its Fredholm index

$$\text{index}(a) = \dim \ker(a) - \dim \ker(a^*)$$

is finite.
If $a \in \mathcal{D}[\vec{E}]$ is Fredholm then $\text{index}(a) = 0$.
However, $\text{index}(S) = -1$. □
Lemma

If $a \in \mathcal{B}(H)$ is normal then

$$C^*(a, l) \cong C(\sigma(a)).$$

For every $f : \sigma(a) \to \mathbb{C}$ we can define $f(a) \in C^*(a, l)$.

For example:

$$a = \frac{|a| + a}{2} - \frac{|a| - a}{2}$$

If $a \geq 0$, then \sqrt{a} is defined.
A C* algebra is *unital* if it has a unit (multiplicative identity).

Lemma

Every C algebra A is contained in a unital C* algebra $	ilde{A} \cong A \oplus \mathbb{C}$.*

We call \tilde{A} the *unitization* of A.
If $A < B$ we say A is a *unital subalgebra* of B if both B is unital and its unit belongs to A.

If $a \in A$ and A is unital, one could define

$$
\sigma_A(a) = \{ \lambda \in \mathbb{C} \mid a - \lambda I \text{ is not invertible} \}.
$$

Lemma

*Assume A is a unital subalgebra of B and $a \in A$. Then $\sigma_A(a) = \sigma_B(a)$.***
Lemma

Every \(*\)-homomorphism \(\Phi\) between \(C^*\) algebras is continuous.

\(\text{Pf.}\) We prove \(\Phi\) is a contraction.

Note that \(\sigma(\Phi(a)) \subseteq \sigma(a)\). Thus for a normal

\[
\| a \| = \sup \{| \lambda | \mid \lambda \in \sigma(a) \}
\geq \sup \{| \lambda | \mid \lambda \in \sigma(\Phi(a))\}
= \| \Phi(a) \|
\]

For general \(a\) we have

\[
\| a \| = \sqrt{\| aa^* \|} \geq \sqrt{\| \Phi(aa^*) \|} = \| \Phi(a) \|.
\]
Pure states and the GNS construction

Theorem (Gelfand–Naimark)

Every commutative C^*-algebra is isomorphic to $C_0(X)$ for some locally compact Hausdorff space X. If it is moreover unital, then X can be chosen to be compact.

Theorem (Gelfand–Naimark–Segal)

Every C^*-algebra A is isomorphic to a closed subalgebra of $B(H)$ for some Hilbert space H.

A continuous linear functional $\varphi: A \to \mathbb{C}$ is positive if $\varphi(a) \geq 0$ for all positive a. It is a state if $\varphi(I) = 1$.

$\mathcal{S}(A)$ is the space of all states on A.
If ξ is a unit vector, define a functional ω_ξ on $B(H)$ by

$$\omega_\xi(a) = (a\xi|\xi).$$

Then $\omega_\xi(a) \geq 0$ for a positive a and $\omega_\xi(I) = 1$; hence it is a state. States form a weak*-compact convex subset of A^*. Cauchy–Schwartz for states:

$$|\varphi(a^*b)|^2 \leq \varphi(a^*a)\varphi(b^*b).$$
Theorem (GNS)

Assume φ is a state on A. There is a representation $\pi_\varphi: A \to \mathcal{B}(H_\varphi)$ and a unit vector $\xi = \xi_\varphi$ in H_φ such that

$$\varphi(a) = \omega_\xi(a)$$

for all a.

Proof.
On $A \times A$ let

$$(a|b) = \varphi(b^*a).$$

$J_\varphi = \{a \mid \varphi(a^*a) = 0\}$

$H_\varphi = \widetilde{A}/J$

$\pi_\varphi(a)$ sends $[b]_{J_\varphi}$ to $[ab]_{J_\varphi}$.

\blacksquare
The space of states on A

$\pi_1 \sim \pi_2$ if $\exists u : H_1 \to H_2$ such that

\[
\pi_1 \sim \pi_2 \quad \text{if} \quad \exists u : H_1 \to H_2 \quad \text{such that} \\
\pi_1 \sim \pi_2 \quad \text{if} \quad \exists u : H_1 \to H_2 \quad \text{such that} \\
B(H_1) \quad \pi_1 \\
\downarrow \quad \pi_1 \\
A \quad \text{Ad} u \\
\downarrow \quad \text{Ad} u \\
B(H_2) \quad \pi_2 \\
\downarrow \quad \pi_2 \\
B(H_2) \\
\text{Ad} u(a) = uau^*$
\(\varphi_1 \sim \varphi_2 \) if and only if \(\exists u \in A \) such that

\[A \xrightarrow{\text{Ad} \ u} C \xleftarrow{\varphi_2} A \]

Theorem

For \(\varphi_1, \varphi_2 \) in \(\mathbb{S}(A) \) we have \(\varphi_1 \sim \varphi_2 \iff \pi \varphi_1 \sim \pi \varphi_2 \).
Lemma

If $\|\varphi\| = 1$ then φ is a state iff $\varphi(I) = 1$.

A state φ is pure iff

$$\varphi = t\psi_0 + (1 - t)\psi_1, \quad 0 \leq t \leq 1$$

for some states ψ_0, ψ_1 implies $\varphi = \psi_0$ or $\varphi = \psi_1$.

$\mathbb{P}(A)$ is the space of all pure states of A.

Example

If $A = C(X)$, then (by Riesz) φ is a state iff $\varphi(f) = \int f \, d\mu$ for some Borel probability measure μ.

Lemma

For a state φ of $C(X)$ TFAE:

1. φ is pure,
2. for some $x_\varphi \in X$ we have $\varphi(f) = f(x_\varphi)$
3. $\varphi : C(X) \to \mathbb{C}$ is a \ast-homomorphism.
If $\xi \in H$ is a unit vector, then

$$\omega_\xi(a) = (a\xi|\xi)$$

is a vector state. All vector states are pure.

Definition

Some $\varphi \in S(\mathcal{B}(H))$ is singular if $\varphi[K(H)] = \{0\}$.

Theorem

Each state of $\mathcal{B}(H)$ is a weak*-limit of vector states.
Fix a free ultrafilter \mathcal{U} on \mathbb{N}. Then

$$\varphi^{(\vec{e})}_{\mathcal{U}}(a) = \lim_{n \to \mathcal{U}} (ae_n | e_n)$$

is a singular state.

A state of the form $\varphi^{(\vec{\xi})}_{\mathcal{U}}$ is diagonalized.

Theorem (Anderson, 1977)

Each $\varphi^{(\vec{e})}_{\mathcal{U}}$ is pure.

Conjecture (Anderson, 1977)

Every pure state on $\mathcal{B}(H)$ can be diagonalized.
Let p, q be projections in $\mathcal{B}(H)$. Define $p \leq q$ if $pq = p$.

Fact

$pq = p$ iff $qp = p$.

Proof.

Since $p = p^*$, $pq = p$ implies $pq = (pq)^* = q^*p^* = qp$.

Note that $pq = qp$ if and only if pq is a projection.

$p \land q$: the projection to $\text{range}(p) \cap \text{range}(q)$

$p \lor q$: the projection to $\text{Span}(\text{range}(p) \cup \text{range}(q))$.
Lemma

The projections in $\mathcal{B}(H)$ form a lattice with respect to \wedge, \vee, \leq, I, 0.

Lemma

$\mathcal{B}(H) = C^*(\mathcal{P}(\mathcal{B}(H)))$. That is, $\overline{\text{Span} \mathcal{P}(\mathcal{B}(H))}$ is norm-dense in $\mathcal{B}(H)$.

\[\square\]
$\mathcal{K}(H)$ is a (self-adjoint, norm closed, two-sided) ideal of $\mathcal{B}(H)$.
$\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ is the Calkin algebra.
$\pi : \mathcal{B}(H) \rightarrow \mathcal{C}(H)$ is the quotient map.
Lemma
If a is self-adjoint in $C(H)$, then $a = \pi(a)$ for a self-adjoint a in $C(H)$.

Pf. Fix any a_0 such that $\pi(a_0) = a$. Let $a = (a_0 + a_0^*)/2$. □
Lemma

If \(p \) *is a projection in* \(\mathcal{C}(H) \), *then* \(p = \pi(p) \) *for a projection* \(p \) *in* \(\mathcal{C}(H) \).

Pf. Fix a self-adjoint \(a \) such that \(p = \pi(a) \). There are \((X, \mu)\) and \(f \in L^\infty(X, \mu) \) and a Hilbert space isomorphism \(\Phi: L^2(X, \mu) \to H \) such that \(\Phi(m_f) = a \). Let

\[
h(x) = \begin{cases}
1, & f(x) \geq 1/2 \\
0, & f(x) < 1/2.
\end{cases}
\]

Then \(m_h \) is a projection and \(\pi(m_h) = \pi(m_f) \). \(\square \)
Lemma

There is a normal (even a unitary) operator in $\mathcal{C}(H)$ that is distinct from $\pi(v)$ for any normal v in $\mathcal{B}(H)$.

Pf. The image S of the unilateral shift is a unitary in $\mathcal{C}(H)$, since $S^*S = I = SS^*$. If $v - S$ is compact then v is Fredholm, and $\text{index}(v) = -1$. □
General spectral theorem

Theorem (Spectral Theorem)

If A is an abelian C^*-subalgebra of $\mathcal{B}(H)$ then there is a finite measure space (X, μ), a subalgebra B of $L^\infty(X, \mu)$, and a Hilbert space isomorphism $\Phi: L^2(X, \mu) \rightarrow H$ such that $\Phi[B] = A$.
The atomic masa

MASA: MAximal Self-Adjoint SubAlgebra.
Fix H and its orthonormal basis (e_n).

$$(\alpha_n) \in \ell^\infty$$

$$\sum_n \alpha_n P_{\mathbb{C}e_n} \in \mathcal{B}(H).$$

Lemma

$A^{(\vec{\alpha})} = \{ \sum_n \alpha_n P_{\mathbb{C}e_n} \}$ is a masa in $\mathcal{B}(H)$. \qed
Embedding $\mathcal{P}(\mathbb{N})$ into $\mathcal{P}(\mathcal{B}(H))$

\[X \in \mathcal{P}(\mathbb{N}) \]
\[P_X^{(e)} = P_X = \text{proj}_{\text{Span}\{e_n|n \in X\}} \]

\[\mathcal{P}(\mathbb{N}) \ni X \mapsto P_X \in \mathcal{P}(\mathcal{B}(H)). \]

Hence $\mathcal{P}(\mathbb{N})$ is a maximal Boolean subalgebra of $\mathcal{P}(\mathcal{B}(H))$.
Atomless masa

$L^\infty(\mu)$ is also a masa in $\mathcal{B}(L^2(\mu))$ for a diffused measure μ.

Fact

$\mathcal{P}(L^\infty(\mu))$ is a maximal Boolean subalgebra of $\mathcal{P}(\mathcal{B}(H))$ isomorphic to the Lebesgue measure algebra, Borel/Null.
Theorem (Johnson–Parrott)

If A is a masa in $B(H)$ then $\pi[A]$ is a masa in $C(H)$.

For the atomic masa A we have

$$A/K(H) \approx \ell^\infty / c_0.$$

$$\mathcal{P}(\mathbb{N})/\text{Fin} \ni [A] \mapsto [P_A] \in \mathcal{P}(\ell^\infty / c_0).$$

Both $\mathcal{P}(\mathbb{N})/\text{Fin}$ and the Lebesgue measure algebra are maximal boolean subalgebras of $\mathcal{P}(C(H))$.

Lemma
For projections p and q in $\mathcal{B}(H)$ TFAE

1. $\pi(p) \leq \pi(q)$,
2. $q(I - p)$ is compact,
3. $(\forall \varepsilon > 0)(\exists p_0 \leq I - p) \ p_0$ is finite-dimensional and $\|q(I - p - p_0)\| < \varepsilon$.

We write $p \leq_K q$ if the conditions of Lemma 23 are satisfied.

Corollary
The poset $(\mathcal{P}(\mathcal{C}(H)), \leq)$ is isomorphic to the quotient $(\mathcal{P}^{\mathcal{B}}(H)), \leq_K)$. Let’s write $\dot{p} = \pi(p)$.

□
Proposition (Weaver)
\(\mathcal{P}(C(H)) \) is not a lattice.

Proof.
Enumerate a basis of \(H \) as \(\xi_{mn}, \eta_{mn} \) for \(m, n \) in \(\mathbb{N} \).

\[\zeta_{mn} = \frac{1}{n} \xi_{mn} + \frac{\sqrt{n-1}}{n} \eta_{mn} \]

\[K = \text{Span}\{\xi_{mn} \mid m, n \in \mathbb{N}\}, \quad p = \text{proj}_K \]

\[L = \text{Span}\{\zeta_{mn} \mid m, n \in \mathbb{N}\}, \quad q = \text{proj}_L \]

For \(f \in \mathbb{N}^\mathbb{N} \) let \(M(f) = \text{Span}\{\xi_{mn} \mid m \leq f(n)\}, \quad r(f) = \text{proj}_{M(f)} \).

Fact

1. \(r(f) \leq p \) for all \(f \),
2. \(r(f) \leq q \) for all \(f \),
3. if \(r \leq_K p \) and \(r \leq_K q \) then \(r \leq_K r(f) \) for some \(f \).
Recall

\[\alpha = \min \{|A| \mid A \text{ is a maximal infinite antichain in } \mathcal{P}(\mathbb{N})/\text{Fin}\}. \]

Definition (Wofsey, 2006)

A family \(A \subseteq \mathcal{P}(\mathcal{B}(H)) \) is almost orthogonal (aof) if \(pq \) is compact for \(p \neq q \) in \(A \).

\[\alpha^* = \min \{|A| \mid A \text{ is a maximal infinite aof}\} \]
Theorem (Wofsey, 2006)

1. *It is relatively consistent with ZFC that* $\aleph_1 = \alpha = \alpha^* < 2^{\aleph_0}$,
2. *MA implies* $\alpha^* = 2^{\aleph_0}$.

Question

Is $\alpha = \alpha^*$? *Is* $\alpha \geq \alpha^*$? *Is* $\alpha^* \geq \alpha$?

It may seem obvious that $\alpha \geq \alpha^*$?
Definition/Theorem (Solecki, 1995)

An ideal \(J \) on \(\mathbb{N} \) is an analytic \(P \)-ideal if there is a lower semicontinuous (lsc) submeasure \(\varphi \) on \(\mathbb{N} \) such that

\[
J = \{ X \mid \limsup_{n} \varphi(X \setminus n) = 0 \}.
\]

Lemma (Steprāns, 2007)

Fix \(a \in \mathcal{B}(H) \). Then

\[
J_a = \{ X \subseteq \mathbb{N} \mid aP^{(\vec{e})}_X \text{ is compact} \}
\]

is an analytic \(P \)-ideal.

Pf. Let \(\varphi_a(X) = \| P_X a \| \). \(P_X a \) is compact iff \(\lim_n \varphi_a(X \setminus n) = 0 \). \(\square \)
Proposition (Wofsey, 2006)

There is a mad family $A \subseteq \mathcal{P}(\mathbb{N})$ whose image in $\mathcal{P}(\mathcal{B}(H))$ is not a maof.

Proof.

Let $\xi_n = 2^{-n/2} \sum_{j=2^n}^{2^{n+1}-1} e_j$ and $q = \text{proj}_{\text{Span}\{\xi_n\}}$. Then $\lim_n \|qe_n\| = 0$ hence J_q is a dense ideal: every infinite subset of \mathbb{N} has an infinite subset in J_q.

Let A be a mad family contained in J_q.

Then q is almost orthogonal to all P_X, $X \in A$. \qed
Let

\[a' = \min\{|A| \mid A \text{ is mad and } A \not\subseteq J \}
\text{ for any analytic P-ideal } J \]
Theorem (Wofsey, 2006)

There is a forcing extension in which there are maximal chains in $\mathcal{P}(\mathcal{C}(H))$ of different cofinalities (and $2^{\aleph_0} = \aleph_2$).

Theorem (essentially Shelah–Steprāns)

There is a model of $\neg CH$ in which all maximal chains in $\mathcal{P}(\mathbb{N})/\text{Fin}$ are isomorphic.
A twist of projections

Consider

\[I = \min\{|A| \mid A \text{ is a family of commuting projections in } \mathcal{C}(H)\} \]

that cannot be lifted to a family of commuting projections of \(\mathcal{B}(H) \).

Lemma

\[I > \aleph_0. \]

Proposition (Farah, 2006)

\[I = \aleph_1: \text{There are commuting projections } p_\xi, \xi < \omega_1, \text{ in } \mathcal{C}(H) \text{ that cannot be lifted to commuting projections of } \mathcal{B}(H). \]
Pf. Construct p_ξ in $\mathcal{P}(\mathcal{B}(H))$ so that for $\xi \neq \eta$:

1. $p_\xi p_\eta$ is compact, and
2. $\|[p_\xi, p_\eta]\| > 1/4$

If (e_n) diagonalizes each p_ξ, fix $X(\xi) \subseteq \mathbb{N}$ such that

$$d_\xi = p_\xi - P_{X(\xi)}^{(\bar{e})}$$

is compact. Let

$$r_n = P_{\{0,1,\ldots,n-1\}}^{(\bar{e})}.$$

Then a is compact iff $\lim_n \|a(I - r_n)\| = 0$.

Fix \tilde{n} such that $\|d_\xi(I - r_{\tilde{n}})\| < 1/8$ for uncountably many ξ.

If $\|(d_\xi - d_\eta)\|_{r_{\tilde{n}}} < 1/8$, then

$$\|[p_\xi, p_\eta]\| \leq \|[P_{X(\xi)}, P_{X(\eta)}]\| + \frac{1}{4} = \frac{1}{4}$$

a contradiction. \qed
Automorphisms of C* algebras

\[\text{Ad } u(a) = uau^*. \]

An automorphism \(\Phi \) is \textit{inner} if \(\Phi = \text{Ad } u \) for some unitary \(u \).

Lemma

If \(A \) is abelian then \(\text{id} \) is its only inner automorphisms.

If \(A = C(X) \) then each automorphism is of the form

\[f \mapsto f \circ \Psi \]

for an autohomeomorphism \(\Psi \) of \(X \).
Lemma
All automorphisms of $\mathcal{B}(H)$ are inner. Hence all automorphisms of any M_n are inner.

Lemma
The CAR algebra $(M_{2^\infty} = \bigotimes_n M_2)$ has outer automorphisms.

Pf. $\Phi = \bigotimes_n \text{Ad} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is outer since $\bigotimes_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is not in M_{2^∞}.

Lemma
If A is a unital subalgebra of B then

1. The restriction of a state of B to A is a state of A.

2. Every (pure) state of A can be extended to a (pure) state of B.

Pf. (2) By Hahn–Banach $\{\psi \in B^* \mid \psi \upharpoonright A = \varphi, \|\psi\| = 1\}$ is nonempty and by Krein–Milman it has an extreme point. \square
Example

Restriction of a pure state to a unital subalgebra need not be pure. If ω_ξ is a vector state of $B(H)$ and A is the atomic masa diagonalized by (e_n), then $\omega_\xi \upharpoonright A$ is pure iff $|\langle \xi | e_n \rangle| = 1$ for some n.
Proposition
Assume $A < B$ and B is abelian. If every pure state of A extends to the unique pure state of B, then $A = B$.

Proof.
$A < C(X)$ separates points of X. Use Stone–Weierstrass. \hfill \square

Problem (Noncommutative Stone–Weierstrass problem)
Assume $A < B$ and A separates $\mathcal{P}(B) \cup \{0\}$. Does necessarily $A = B$?
A C* algebra is *simple* if and only if it has no (closed, two-sided, self-adjoint) nontrivial ideals.

Lemma (Akemann–Weaver)

Assume A is a simple separable unital C* algebra and φ and ψ are its pure states. Then there is a simple separable unital $B > A$ such that

1. φ and ψ extend to pure states φ', ψ' of B in a unique way.
2. φ' and ψ' are equivalent.
Pure states on $M_{2\infty}$

On M_2:

\[\varphi_1 : \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto a_{11} \]

\[\varphi_2 : \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto a_{22} \]

For $f \in 2^\mathbb{N}$

\[\varphi_f = \bigotimes_n \varphi_{f(n)} \]

is in $\mathbb{P}(M_{2\infty})$.

In $M_{2\infty}$, $\varphi_f \sim \varphi_g$ iff $\{ n \mid f(n) \neq g(n) \}$ is finite.

Fact

If $f \neq g$ then $\| \varphi_f - \varphi_g \| = 2$. \qed
Type I algebras

Definition (Kaplansky)

A C* algebra A is of type I if for every irreducible representation \(\pi: A \to \mathcal{B}(H)\) we have \(\pi[A] \supseteq \mathcal{K}(H)\).

[Not to be confused with type I von Neumann algebras: \(\mathcal{B}(H)\) is a type I von Neumann algebra and a non-type-I C* algebra.]

A C* algebra is simple if and only if it has no (closed, two-sided, self-adjoint) nontrivial ideals.

Lemma

A type I C* algebra has only one irrep up to equivalence if and only if it is isomorphic to \(\mathcal{K}(H)\) for some H.

Theorem (Glimm)

If A is a non-type-I C* algebra then there is $B < A$ that has a quotient isomorphic to M_{2^∞}.
Corollary (Akemann–Weaver, 2002)

If A is non-type-I and has a dense subset of cardinality $< 2^{\aleph_0}$, then A has nonequivalent pure states.

Proof.
There are pure states φ_f, $f \in 2^N$, such that if $f \neq g$ and $\text{Ad } u \varphi_f = \text{Ad } v \varphi_g$ then $\|u - v\| \geq 1$. □
Theorem (Naimark, 1948)
Any two irreps of $\mathcal{K}(H)$ are equivalent.

Question (Naimark, 1951)
Is the converse true?

Theorem (Akemann–Weaver, 2002)
Assume \diamondsuit. Then Naimark’s problem has a negative solution.
Fix $h_\alpha : \alpha \to \omega_1$ such that for every $g : \omega_1 \to \omega_1$ the set
\[\{ \alpha \mid g \upharpoonright \alpha = h_\alpha \} \] is stationary.
Find an increasing chain of simple separable unital C* algebras A_α, $\alpha < \omega_1$ and pure state ψ_α of A_α so that

1. $\alpha < \beta$ implies $\psi_\beta \upharpoonright A_\alpha = \psi_\alpha$.

For each A_α, let $\{ \phi_\alpha^\gamma \mid \gamma < \omega_1 \}$ enumerate all of its pure states. If α is limit, let

\[A_\alpha = \lim_{\rightarrow} A_\beta. \]
Now we consider the successor ordinal case, $\beta = \alpha + 1$. Assume there is $\varphi \in \mathcal{P}(A_\alpha)$ such that $\varphi \upharpoonright A_\beta = \varphi^{h_\alpha(\beta)}_\beta$ for all $\beta < \alpha$.

Using lemma, let $A_{\alpha+1}$ be such that ψ_α and φ have unique extensions to $A_{\alpha+1}$ that are equivalent. Since $A = A_{\omega_1}$ is unital and infinite-dimensional, $A \ncong \mathcal{K}(H')$.
Fix $\varphi \in \mathbb{P}(A)$.

Claim

$\{ \alpha \mid \varphi \upharpoonright A_\alpha \in \mathbb{P}(A_\alpha) \}$ contains a club.

Proof.

For $x \in A_{\omega_1}$ and $m \in \mathbb{N}$

$$\{ \alpha \mid \exists \psi_1, \psi_2 \in \mathbb{S}(A_\alpha), \varphi = \frac{1}{2}(\psi_1 + \psi_2) \text{ and } |\varphi(x) - \psi_1(x)| \geq \frac{1}{m} \}$$

is bounded in ω_1. □
Fix $h: \omega_1 \to \omega_1$ so that

$$\varphi \upharpoonright A_\alpha = \varphi_{\alpha}^{h(\alpha)}$$

for all α.

Let α be such that $h \upharpoonright \alpha = h_{\alpha}$. Then $\varphi \upharpoonright A_{\alpha+1}$ is equivalent to $\psi_{\alpha+1}$. Since $\psi_{\alpha+1}$ has unique extension to A_{ω_1}, so does φ and they remain equivalent.
Definition

A masa in $\mathcal{B}(H)$ has the extension property (EP) if each of its pure states extends uniquely to a pure state on $\mathcal{B}(H)$.

Every vector state has the unique extension to a pure state, hence this is a property of masas in the Calkin algebra.

1. Kadison–Singer, 1955: The atomless masa does not have the EP.

2. Anderson, 1974: CH implies there is a masa in the Calkin algebra with the EP.
Question (Kadison–Singer, 1955)

Does the atomic masa of \(\mathcal{B}(H) \) have EP?

A positive answer is equivalent to an arithmetic statement, so let’s go on.
Fix an orthonormal basis \((e_n)\) of \(H\), let \(A\) be the atomic masa diagonalized by \((e_n)\). Each pure state of \(A\) is of the form

\[
\varphi_U(a) = \lim_{n \to U} (ae_n|e_n)
\]

for an ultrafilter \(U\) on \(\mathbb{N}\).

A state on \(B(H)\) of the form \(\varphi^{(\xi)}_U\) is diagonalized (by \(U, (e_n)\)).

Conjecture (Anderson)

Every pure state \(\varphi\) of \(B(H)\) can be diagonalized.
Recall that on an abelian C^* algebra a state is pure iff it is multiplicative.

Conjecture (Kadison–Singer)

For every pure state φ of $B(H)$ there is an atomic masa \mathcal{A} such that $\varphi \restriction \mathcal{A}$ is multiplicative.

If $\varphi \restriction \mathcal{A}$ is multiplicative, then there is an ultrafilter \mathcal{U} such that φ and $\varphi_{\mathcal{U}}$ agree on \mathcal{A}. We can conclude that $\varphi = \pi_{\mathcal{U}}$ if the answer to the Kadison–Singer problem is positive.
Theorem (Akemann–Weaver, 2005)

CH implies there is a pure state \(\varphi \) on \(\mathcal{B}(H) \) that is not multiplicative on any atomic masa.
States are coded by ‘noncommutative finitely additive measures.’

Theorem (Gleason)

Assume $\mu: \mathcal{P}(\mathcal{B}(H)) \to [0, 1]$ is such that $\varphi(p + q) = \varphi(p) + \varphi(q)$ whenever $pq = 0$. Then there is a unique state φ on $\mathcal{B}(H)$ that extends μ. \qed
Lemma
If φ is a state on A and p is a projection such that $\varphi(p) = 1$, then $\varphi(a) = \varphi(pap)$ for all a.

Proof.
By Cauchy–Schwartz

$$|\varphi((I - p)a)| \leq \sqrt{\varphi(I - p)\varphi(a^*a)} = 0$$

since $a = pa + (I - p)a$ we have $\varphi(a) = \varphi(pa)$, similarly $\varphi(pa) = \varphi(pap)$. \qed
Definition

A family \mathcal{F} of projections in a C^* algebra is a filter if

1. for p, q in \mathcal{F} there is $r \in \mathcal{F}$ such that $r \leq p$ and $r \leq q$.

2. for $p \in \mathcal{F}$ and $r \geq p$ we have $r \in \mathcal{F}$.

A filter generated by $\mathcal{X} \subseteq \mathcal{P}(A)$ is the intersection of all filters containing \mathcal{X}.
A filter \mathcal{F} in $\mathcal{P}(\mathcal{C}(H))$ lifts if there is a commuting family \mathcal{X} in $\mathcal{P}(\mathcal{B}(H)))$ that generates a filter \mathcal{F} such that $\pi[\mathcal{F}] = \mathcal{F}$.

Note: If \mathcal{F} is a filter in $\mathcal{C}(H)$, then

$$\tilde{\mathcal{F}} = \{ p \in \mathcal{P}(\mathcal{B}(H)) \mid \pi[p] \in \mathcal{F} \}$$

is not necessarily a filter.
Question

Does every maximal filter \mathcal{F} in $P(C(H))$ lift?

Theorem (Anderson)

There are a singular pure state φ of $B(H)$, an atomic masa A_1, and an atomless masa A_2 such that $\varphi \upharpoonright A_j$ is multiplicative for $j = 1, 2$.
Lemma (Weaver, 2007)

For \tilde{F} in $\mathcal{P}(B(H))$ TFAE:

(A) $\|p_1 p_2 \ldots p_n\| = 1$ for any n-tuple of projections in \tilde{F} and F is maximal with respect to this property.

(B) $(\forall \varepsilon > 0)$ for all finite $F \subseteq \tilde{F}$ there is a unit vector ξ such that

$$\|p\xi\| > 1 - \varepsilon$$

for all $p \in F$.

Definition

A family \tilde{F} in $\mathcal{P}(B(H))$ is a quantum filter if the conditions of Lemma 37 hold.
Theorem (Farah–Weaver, 2007)

Assume $\mathcal{F} \subseteq \mathcal{P}(\mathcal{C}(H))$. TFAE:

1. \mathcal{F} is a maximal quantum filter,
2. $\mathcal{F} = \mathcal{F}_\varphi = \{ p \mid \varphi(p) = 1 \}$ for some pure state φ.

Proof.

(1) implies (2). For a finite $F \subseteq \mathcal{F}$ and $\epsilon > 0$ let

$$X_{F,\epsilon} = \{ \varphi \in \mathcal{S}(\mathcal{B}(H)) \mid \varphi(p) \geq 1 - \epsilon \text{ for all } p \in F \}.$$

If ξ is as in (B) then $\omega_\xi \in X_{F,\epsilon}$.

Since $X_{F,\epsilon}$ is weak*-compact $\bigcap_{(F,\epsilon)} X_{F,\epsilon} \neq \emptyset$. Any extreme point is a pure state.

(It can be proved that this intersection is a singleton.)

(2) implies (1). If $\varphi(p_j) = 1$ for $j = 1, \ldots, k$, then $\varphi(p_1 p_2 \ldots p_k) = 1$, hence (A) follows.

\square
Lemma

Let \((\xi_n)\) be an orthonormal basis. If for some \(n\) we have \(\mathbb{N} = \bigcup_{j=1}^{n} A_j\) and there is \(q \in \tilde{F}\) such that

\[
\|P_{A_j}^{(\xi)} q\| < 1
\]

for all \(j\), then \(F\) is not diagonalized by \((\xi_n)\).
Lemma
Assume \((\xi_n)\) is an orthonormal basic sequence. There is a partition of \(\mathbb{N}\) into finite intervals \((J_n)\) such that for all \(k\)

\[\xi_k \in \overline{\text{Span}} \{ e_i \mid i \in J_n \cup J_{n+1} \} \]

(modulo a small perturbation of \(\xi_k\)) for some \(n = n(k)\).

For \((J_n)\) as in Lemma 39 let

\[\mathbb{D}_j = \{ q \mid \| P_{J_n \cup J_{n+1}} \bar{e} \| < 1/2 \text{ for all } n \} \]

Lemma
Each \(\mathbb{D}_j\) is dense in \(\mathcal{P}(\mathcal{B}(H))\).
\[\vartheta = \min\{|F| \mid F \subseteq \mathbb{N}^\mathbb{N} \text{ is } \leq\text{-cofinal}\}. \]

\[t^* = \min\{|T| \mid T \subseteq \mathcal{P}(\mathcal{C}(H)) \setminus 0 \quad \text{\(T\) is a maximal decreasing well-ordered chain}\} \]

Theorem (Farah–Weaver)

Assume \(\vartheta \leq t^* \). Then there exists a maximal proper filter in \(\mathcal{P}(\mathcal{C}(H)) \) that is not diagonalized by any atomic masa.

1CH would do; \(\vartheta \) <‘the Novák number of \(\mathcal{P}(\mathcal{C}(H)) \)' is best if it makes sense
Pf. By $d \leq t^*$, we may choose \mathcal{F} so that $\mathcal{F} \cap \mathbb{D}_j \neq \emptyset$ for all (\vec{J}). Given (ξ_k), pick (J_n) such that $\xi_k \in J_{n(k)} \cup J_{n(k)+1}$ for all k. Let

$$A_i = \{k \mid n(k) \mod 4 = i\}$$

for $0 \leq i < 4$.

If $q \in \mathcal{F} \cap \mathbb{D}_j$, then $\|P_{A_i}^{(\xi)} q\| < 1$ for $0 \leq i < 4$. □

Corollary (Akemann-Weaver, 2006)

CH implies there is a pure state that is not multiplicative on any atomic masa.
An extra: Reid’s theorem

An ultrafilter \mathcal{U} on \mathbb{N} is a Q-point if every partition of \mathbb{N} into finite intervals has a transversal in \mathcal{U}. Recall $P^{(\vec{e})}_X = P_X = \text{proj}_{\text{Span}\{e_n|n \in X\}}$.

Theorem (Reid)

If \mathcal{U} is a Q-point then $\varphi_{\mathcal{U}} \upharpoonright \mathcal{A}^{(\vec{e})}$ has the unique extension to a pure state of $\mathcal{B}(H)$.
Proof of Reid’s theorem

Fix a pure state extension \(\varphi \) of \(\varphi_U \upharpoonright A(\vec{e}) \) and \(a \in \mathcal{B}(H) \). Fix finite intervals \((J_i)\) such that \(\mathbb{N} = \bigcup_n J_n \) and

\[
\| P_{J_m} a P_{J_n} \| < 2^{-m-n}
\]

whenever \(|m - n| \geq 2 \) and let \(X \in \mathcal{U} \) be such that

\[
X \cap (J_{2i} \cup J_{2i+1}) = \{n(i)\}
\]

for all \(i \).
Then with \(Q_i = P_{n(i)} \) and \(f_i = e_{n(i)} \) we have \(\varphi(\sum_i Q_i) = 1 \) and

\[
Q a Q = \sum_i Q_i a \sum_i Q_i = \sum_i Q_i a Q_i + \sum_{i \neq j} Q_i a Q_j.
\]

The second summand is compact, and

\[
Q_i a Q_i = (af_i | f_i) f_i
\]

therefore if \(\alpha = \lim_{i \to \mathcal{U}} (af_i | f_i) \) we have

\[
\lim_{X \to \mathcal{U}} (P_X a P_X - \alpha P_X) = 0
\]

and \(\varphi(a) = \alpha \).

Hence \(\varphi(a) = \varphi_{\mathcal{U}}(a) \) for all \(a \).