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H: a complex, infinite-dimensional Hilbert space
(en): an orthonormal basis of H

(ξ|η): the inner product on H

‖ξ‖ =
√

(ξ|ξ̄)
a : H → H: a linear operator

‖a‖ = sup{‖aξ‖ | ξ ∈ H, ‖ξ‖ = 1}
a is bounded if ‖a‖ <∞.

(B(H),+, ·, ∗, ‖ · ‖): the algebra of all bounded operators on H.
The adjoint, a∗, is defined implicitly by

(a∗ξ|η) = (ξ|aη)

for all ξ, η in H.



Lemma
For all a, b we have

1. (a∗)∗ = a,

2. ‖a‖ = ‖a∗‖,
3. ‖ab‖ ≤ ‖a‖ · ‖b‖,

4. ‖aa∗‖ = ‖a‖2.

Hence B(H) is a Banach algebra with involution. (4) is the “C*
equality.”



Example

If H = L2(X , µ) and f : X → C is bounded and measurable, then

H 3 g 7→ mf (g) = fg ∈ H

is a bounded linear operator. We have ‖mf ‖ = ‖f ‖∞ and

m∗
f = mf̄ .

Hence m∗
f mf = mf m

∗
f = m|f |2 .



An operator a is normal if aa∗ = a∗a.
If Φ: H1 → H2 is an isomorphism between Hilbert spaces, then

a 7→ AdΦ(a) = ΦaΦ−1

is an isomorphism between B(H1) and B(H2).

Theorem (Spectral Theorem)

If a is a normal operator then there is a finite measure space
(X , µ), a measurable function f on X , and a Hilbert space
isomorphism Φ: L2(X , µ) → H such that AdΦmf = a.



An operator is self-adjoint if a = a∗. For any b ∈ B(H) we have

b = b0 − ib1,

with both b0 = (b + b∗)/2 and b1 = i(b∗ − b)/2 self-adjoint.

Fact
a is self-adjoint iff (aξ|ξ) is real for all ξ.

Pf.
((a−a∗)ξ|ξ) = (aξ|ξ)− (a∗ξ|ξ) = (aξ|ξ)− (ξ|aξ) = (aξ|ξ)− (aξ|ξ).



An operator b such that (bξ|ξ) ≥ 0 for all ξ ∈ H is positive.

Example

mf ≥ 0 iff ν{x | f (x) < 0} = 0.



For any self-adjoint a ∈ B(H) we have a = a0 − a1, with both a0

and a1 positive. (Hint: spectral theorem.)

Lemma
b is positive iff b = a∗a for some (non-unique) a.

Proof.
(⇐) (a∗aξ|ξ) = (aξ|aξ) ≥ 0.
(⇒) If b is positive, by the spectral theorem we may assume
b = mf for f ≥ 0. Let a = m√

f .



A p ∈ B(H) is a projection if p2 = p∗ = p.

Lemma
p is a projection iff it is an orthogonal projection to a closed
subspace of H.

Pf. We have p = mf and f = f 2 = f̄ . Hence f (x) ∈ {0, 1} for
almost all x , and mf = proj{g |supp(g)⊆Y } with Y = f −1({1}).



I is the identity operator on H.
An operator u is unitary if uu∗ = u∗u = I .
An operator v is a partial isometry if

p = vv∗ and q = v∗v

are both projections.

Example

A partial isometry that is not a normal operator. Let (en) be the
orthonormal basis of H. The unilateral shift S is defined by

S(en) = en+1 for all n.

Then S∗(en+1) = en and S∗(e0) = 0.

S∗S = I 6= projSpan{en|n≥1} = SS∗.



We have an analogue of z = reθ for complex numbers.

Theorem (Polar Decomposition)

Every a in B(H) can be written as

a = bv

where b is positive and v is a partial isometry.

This does not mean that understanding arbitrary operators reduces
to understanding self-adjoints and partial isometries.

Problem
Does every a ∈ B(H) have a nontrivial closed invariant subspace?

The answer is easily positive for all normal operators and all partial
isometries.



I is the identity operator on H.

Definition (Spectrum)

σ(a) = {λ ∈ C | a− λI is not invertible}.

Lemma

1. σ(a) is always a compact subset of C.

2. σ(a∗) = {λ | λ ∈ σ(a)}.
3. a is self-adjoint iff σ(a) ⊆ R.

4. a is positive iff σ(a) ⊆ [0,∞).



Concrete and abstract C* algebras

Definition (Concrete C* algebras)

If X ⊆ B(H) let A = C ∗(X ) be the smallest norm-closed
subalgebra of B(H).

Definition
A is an abstract C* algebra if it is a Banach algebra with
involution such that ‖aa∗‖ = ‖a‖2 for all a.



Example

X is a locally compact Hausdorff space.

C0(X ) = {f : X → C | f is continuous and vanishes at ∞}.

f ∗ = f .

C0(X ) is abelian, in particular each operator is normal.
f is self-adjoint iff the range(f ) ⊆ R.

f is positive iff range(f ) ⊆ [0,∞).

f is a projection iff f 2(x) = f (x) = f (x)
iff range(f ) ⊆ {0, 1}
iff f = χU for a clopen U ⊆ X.

If X is compact then C0(X ) = C (X ) has the identity, and we have

σ(f ) = range(f ).



Example

Mn: n × n complex matrices. Mn
∼= B(`n2).

adjoint, unitary: the usual meaning.
self-adjoint: hermitian.

positive: positively definite.
σ(a): the set of eigenvalues.

spectral theorem: spectral theorem.
(normal matrices are diagonalizable)



The algebra of compact operators,

K(H) =C ∗({a ∈ B(H) | a[H] is finite-dimensional}).
={a ∈ B(H) | a[unit ball] is compact}

Fact
If rn = projSpan{ej |j≤n} TFAE

1. a ∈ K(H),

2. limn ‖a(I − rn)‖ = 0,

3. limn ‖(I − rn)a‖ = 0.



Note: if a is self-adjoint then

‖a(I − rn)‖ = ‖(a(I − rn))
∗‖ = ‖(I − rn)a‖.

K(H) is an ideal of B(H) (closed, two-sided, self-adjoint ideal).
The quotient C(H) = B(H)/K(H) is the Calkin algebra.
π : B(H) → C(H) is the quotient map.
σ(π(a)) = σe(a): the essential spectrum of a.
Here
σe(a) = the set of all accumulation points of σ(a)

plus all points of σ(a) of infinite multiplicity



Direct (inductive) limits
If Ω is a directed set, Ai , i ∈ Ω are C* algebras and

ϕi ,j : Ai → Aj for i < j

is a commuting family of *-homomorphisms, define the direct limit

A = lim−→
i

Ai .

For a ∈ Ai let
‖a‖ = lim

i
‖ϕi ,j(a)‖Aj

and take the completion.

Example

The CAR (Canonical Anticommutation Relations) algebra (aka the
Fermion algebra, aka M2∞ UHF algebra).

Φn : M2n → M2n+1

Φn(a) =

(
a 0
0 a

)
.

M2∞ = lim−→(M2n ,Φn).

Alternatively,

M2∞ =
⊗
n∈N

M2.



FDD algebras

If (En) is an orthogonal decomposition of H into finite-dimensional
subspaces then

D[~E ] = {a ∈ B(H) | each En is a-invariant}.

If ~E refines ~F , then D[~E ] < D[~F ].



Fact
The unilateral shift S does not belong to D[~E ] for any ~E.

Pf. Some a is Fredholm if its Fredholm index

index(a) = dim ker(a)− dim ker(a∗)

is finite.
If a ∈ D[~E ] is Fredholm then index(a) = 0.
However, index(S) = −1.



Lemma
If a ∈ B(H) is normal then

C ∗(a, I ) ∼= C (σ(a)).

For every f : σ(a) → C we can define f (a) ∈ C ∗(a, I ).

For example:

a =
|a|+ a

2
− |a| − a

2

If a ≥ 0, then
√

a is defined.



Unital algebras

A C* algebra is unital if it has a unit (multiplicative identity).

Lemma
Every C* algebra A is contained in a unital C* algebra
Ã ∼= A⊕ C.

We call Ã the unitization of A.



If A < B we say A is a unital subalgebra of B if both B is unital
and its unit belongs to A.
If a ∈ A and A is unital, one could define

σA(a) = {λ ∈ C | a− λI is not invertible}.

Lemma
Assume A is a unital subalgebra of B and a ∈ A. Then
σA(a) = σB(a).



Lemma
Every *-homomorphism Φ between C* algebras is continuous.

Pf. We prove Φ is a contraction.
Note that σ(Φ(a)) ⊆ σ(a). Thus for a normal

‖a‖ = sup{|λ| | λ ∈ σ(a)}
≥ sup{|λ| | λ ∈ σ(Φ(a))}
= ‖Φ(a)

For general a we have

‖a‖ =
√
‖aa∗‖ ≥

√
‖Φ(aa∗)‖ = ‖Φ(a)‖.



Pure states and the GNS construction

Theorem (Gelfand–Naimark)

Every commutative C ∗-algebra is isomorphic to C0(X ) for some
locally compact Hausdorff space X . If it is moreover unital, then X
can be chosen to be compact.

Theorem (Gelfand–Naimark–Segal)

Every C*-algebra A is isomorphic to a closed subalgebra of B(H)
for some Hilbert space H.

A continuous linear functional ϕ : A → C is positive if ϕ(a) ≥ 0 for
all positive a. It is a state if ϕ(I ) = 1.
S(A) is the space of all states on A.



If ξ is a unit vector, define a functional ωξ on B(H) by

ωξ(a) = (aξ|ξ).

Then ωξ(a) ≥ 0 for a positive a and ωξ(I ) = 1; hence it is a state.
States form a weak*-compact convex subset of A∗.
Cauchy–Schwartz for states:

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b).



Theorem (GNS)

Assume ϕ is a state on A. There is a representation
πϕ : A → B(Hϕ) and a unit vector ξ = ξϕ in Hϕ such that

ϕ(a) = ωξ(a)

for all a.

Proof.
On A× A let

(a|b) = ϕ(b∗a).

Jϕ = {a | ϕ(a∗a) = 0}

Hϕ = Ã/J

πϕ(a) sends [b]Jϕ to [ab]Jϕ .



The space of states on A

π1 ∼ π2 if ∃u : H1 → H2 such that

B(H1)

Ad u

��

A

π1

==zzzzzzzzz

π2 !!DD
DD

DD
DD

D Ad u(a) = uau∗

B(H2)



ϕ1 ∼ ϕ2 if and only if ∃u ∈ A such that

A

Ad u

��

ϕ1

��?
??

??
??

C

A

ϕ2

??�������

Theorem
For ϕ1, ϕ2 in S(A) we have ϕ1 ∼ ϕ2 ⇔ πϕ1 ∼ πϕ2 .



Lemma
If ‖ϕ‖ = 1 then ϕ is a state iff ϕ(I ) = 1.

A state ϕ is pure iff

ϕ = tψ0 + (1− t)ψ1, 0 ≤ t ≤ 1

for some states ψ0, ψ1 implies ϕ = ψ0 or ϕ = ψ1.
P(A) is the space of all pure states of A.



Example

If A = C (X ), then (by Riesz) ϕ is a state iff ϕ(f ) =
∫

f dµ for
some Borel probability measure µ.

Lemma
For a state ϕ of C (X ) TFAE:

1. ϕ is pure,

2. for some xϕ ∈ X we have ϕ(f ) = f (xϕ)

3. ϕ : C (X ) → C is a *-homomorphism.



If ξ ∈ H is a unit vector, then

ωξ(a) = (aξ|ξ)

is a vector state. All vector states are pure.

Definition
Some ϕ ∈ S(B(H))) is singular if ϕ[K(H)] = {0}.

Theorem
Each state of B(H) is a weak*-limit of vector states.



Fix a free ultrafilter U on N. Then

ϕ
(~e)
U (a) = lim

n→U
(aen|en)

is a singular state.

A state of the form ϕ
(~ξ)
U is diagonalized.

Theorem (Anderson, 1977)

Each ϕ
(~e)
U is pure.

Conjecture (Anderson, 1977)

Every pure state on B(H) can be diagonalized.



The lattice of projections

Let p, q be projections in B(H). Define p ≤ q if pq = p.

Fact
pq = p iff qp = p.

Proof.
Since p = p∗, pq = p implies pq = (pq)∗ = q∗p∗ = qp.

Note that pq = qp if and only if pq is a projection.
p ∧ q: the projection to range(p) ∩ range(q)
p ∨ q: the projection to Span(range(p) ∪ range(q)).



Lemma
The projections in B(H) form a lattice with respect to
∧,∨,≤, I , 0.

Lemma
B(H) = C ∗(P(B(H))). That is, SpanP(B(H)) is norm-dense in
B(H).



Lifting elements in the Calkin algebra

K(H) is a (self-adjoint, norm closed, two-sided) ideal of B(H).
C(H) = B(H)/K(H) is the Calkin algebra.
π : B(H) → C(H) is the quotient map.



Lemma
If a is self-adjoint in C(H), then a = π(a) for a self-adjoint a in
C(H).

Pf. Fix any a0 such that π(a0) = a. Let a = (a0 + a∗0)/2.



Lemma
If p is a projection in C(H), then p = π(p) for a projection p in
C(H).

Pf. Fix a self-adjoint a such that p = π(a). There are (X , µ) and
f ∈ L∞(X , µ) and a Hilbert space isomorphism Φ: L2(X , µ) → H
such that Φ(mf ) = a. Let

h(x) =

{
1, f (x) ≥ 1/2

0, f (x) < 1/2.

Then mh is a projection and π(mh) = π(mf ).



Lemma
There is a normal (even a unitary) operator in C(H) that is distinct
from π(v) for any normal v in B(H).

Pf. The image S of the unilateral shift is a unitary in C(H), since
S∗S = I = SS∗.
If v − S is compact then v is Fredholm, and index(v) = −1.



General spectral theorem

Theorem (Spectral Theorem)

If A is an abelian C*-subalgebra of B(H) then there is a finite
measure space (X , µ), a subalgebra B of L∞(X , µ), and a Hilbert
space isomorphism Φ: L2(X , µ) → H such that Φ[B] = A.



The atomic masa

MASA: MAximal Self-Adjoint SubAlgebra.
Fix H and its orthonormal basis (en).

(αn) ∈ `∞∑
n

αnPCen ∈ B(H).

Lemma
A(~e) = {

∑
n αnPCen} is a masa in B(H).



Embedding P(N) into P(B(H))

X ∈ P(N)

P
(~e)
X = PX = projSpan{en|n∈X}

P(N) 3 X 7→ PX ∈ P(B(H)).

Hence P(N) is a maximal Boolean subalgebra of P(B(H)).



Atomless masa

L∞(µ) is also a masa in B(L2(µ)) for a diffused measure µ.

Fact
P(L∞(µ)) is a maximal Boolean subalgebra of P(B(H))
isomorphic to the Lebesgue measure algebra, Borel/Null.



Theorem (Johnson–Parrott)

If A is a masa in B(H) then π[A] is a masa in C(H).

For the atomic masa A we have

A/K(H) ≈ `∞/c0.

P(N)/Fin 3 [A] 7→ [PA] ∈ P(`∞/c0).

Both P(N)/Fin and the Lebesgue measure algebra are maximal
boolean subalgebras of P(C(H)).



Lemma
For projections p and q in B(H) TFAE

1. π(p) ≤ π(q),

2. q(I − p) is compact,

3. (∀ε > 0)(∃p0 ≤ I − p) p0 is finite-dimensional and
‖q(I − p − p0)‖ < ε.

We write p ≤K q if the conditions of Lemma 23 are satisfied.

Corollary

The poset (P(C(H)),≤) is isomorphic to the quotient
(P(B(H)),≤K).

Let’s write ṗ = π(p).



Proposition (Weaver)

P(C(H)) is not a lattice.

Proof.
Enumerate a basis of H as ξmn, ηmn for m, n in N.

ζmn =
1

n
ξmn +

√
n − 1

n
ηmn

K =Span{ξmn | m, n ∈ N}, p = projK

L =Span{ζmn | m, n ∈ N}, q = projL

For f ∈ NN let M(f ) =Span{ξmn | m ≤ f (n)}, r(f ) = projM(f ) .

Fact

1. r(f ) ≤ p for all f ,

2. r(f ) ≤ q for all f ,

3. if r ≤K p and r ≤K q then r ≤K r(f ) for some f .



Cardinal invariants

Recall

a = min{|A| | A is a maximal infinite antichain in P(N)/Fin}.

Definition (Wofsey, 2006)

A family A ⊆ P(B(H)) is almost orthogonal (aof) if pq is compact
for p 6= q in A.

a∗ = min{|A| | A is a maximal infinite aof}



Theorem (Wofsey, 2006)

1. It is relatively consistent with ZFC that ℵ1 = a = a∗ < 2ℵ0 ,

2. MA implies a∗ = 2ℵ0 .

Question
Is a = a∗? Is a ≥ a∗? Is a∗ ≥ a?

It may seem obvious that a ≥ a∗?



Definition/Theorem (Solecki, 1995)

An ideal J on N is an analytic P-ideal if there is a lower
semicontinuous (lsc) submeasure ϕ on N such that

J = {X | lim sup
n

ϕ(X \ n) = 0}.

Lemma (Steprāns, 2007)

Fix a ∈ B(H). Then

Ja = {X ⊆ N | aP(~e)
X is compact}

is an analytic P-ideal.

Pf. Let ϕa(X ) = ‖PXa‖. PXa is compact iff limn ϕa(X \ n) = 0.



Proposition (Wofsey, 2006)

There is a mad family A ⊆ P(N) whose image in P(B(H)) is not a
maof.

Proof.
Let ξn = 2−n/2

∑2n+1−1
j=2n ej and q = projSpan{ξn}.

Then limn ‖qen‖ = 0 hence Jq is a dense ideal: every infinite
subset of N has an infinite subset in Jq.
Let A be a mad family contained in Jq.
Then q is almost orthogonal to all PX , X ∈ A.



Let

a′ = min{|A| | A is mad and A 6⊆ J

for any analytic P-ideal J}

Fact
a′ ≥ a, a′ ≥ a∗.

One can define p∗, t∗, b∗,. . .

Theorem (Hadwin, 1988)

CH implies that any two maximal chains of projections in C(H) are
order-isomorphic.

Conjecture (Hadwin, 1988)

CH is equivalent to ‘any two maximal chains in P(C(H)) are
order-isomorphic.’



Theorem (Wofsey, 2006)

There is a forcing extension in which there are maximal chains in
P(C(H)) of different cofinalities (and 2ℵ0 = ℵ2).

Theorem (essentially Shelah–Steprāns)

There is a model of ¬CH in which all maximal chains in P(N)/Fin
are isomorphic.



A twist of projections

Consider

l =min{|A| | A is a family of commuting projections in C(H)}
that cannot be lifted to a family of commuting projections of B(H)

Lemma
l > ℵ0.

Proposition (Farah, 2006)

l = ℵ1: There are commuting projections pξ, ξ < ω1, in C(H) that
cannot be lifted to commuting projections of B(H).



Pf. Construct pξ in P(B(H)) so that for ξ 6= η:

1. pξpη is compact, and

2. ‖[pξ, pη]‖ > 1/4

If (en) diagonalizes each pξ, fix X (ξ) ⊆ N such that

dξ = pξ − P
(~e)
X (ξ)

is compact. Let

rn = P
(~e)
{0,1,...,n−1}.

Then a is compact iff limn ‖a(I − rn)‖ = 0.
Fix n̄ such that ‖dξ(I − rn̄)‖ < 1/8 for uncountably many ξ.
If ‖(dξ − dη)‖rn̄‖ < 1/8, then

‖[pξ, pη]‖ ≤ ‖[PX (ξ),PX (η)]‖+
1

4
=

1

4

a contradiction.



Automorphisms of C* algebras

Ad u(a) = uau∗.

An automorphism Φ is inner if Φ = Ad u for some unitary u.

Lemma
If A is abelian then id is its only inner automorphisms.
If A = C (X ) then each automorphism is of the form

f 7→ f ◦Ψ

for an autohomeomorphism Ψ of X .



Lemma
All automorphisms of B(H) are inner. Hence all automorphisms of
any Mn are inner.

Lemma
The CAR algebra (M2∞ =

⊗
n M2) has outer automorphisms.

Pf. Φ =
⊗

n Ad

(
0 1
1 0

)
is outer since

⊗
n

(
0 1
1 0

)
is not in M2∞ .



Extending pure states

Lemma
If A is a unital subalgebra of B then

1. The restriction of a state of B to A is a state of A.

2. Every (pure) state of A can be extended to a (pure) state of
B.

Pf. (2) By Hahn–Banach {ψ ∈ B∗ | ψ � A = ϕ, ‖ψ‖ = 1} is
nonempty and by Krein–Milman it has an extreme point.



Example

Restriction of a pure state to a unital subalgebra need not be pure.
If ωξ is a vector state of B(H) and A is the atomic masa
diagonalized by (en), then ωξ � A is pure iff |(ξ|en)| = 1 for some n.



Proposition

Assume A < B and B is abelian. If every pure state of A extends
to the unique pure state of B, then A = B.

Proof.
A < C (X ) separates points of X . Use Stone–Weierstrass.

Problem (Noncommutative Stone–Weierstrass problem)

Assume A < B and A separates P(B) ∪ {0}. Does necessarily
A = B?



A C* algebra is simple if and only if it has no (closed, two-sided,
self-adjoint) nontrivial ideals.

Lemma (Akemann–Weaver)

Assume A is a simple separable unital C* algebra and ϕ and ψ are
its pure states. Then there is a simple separable unital B > A such
that

1. ϕ and ψ extend to pure states ϕ′, ψ′ of B in a unique way.

2. ϕ′ and ψ′ are equivalent.



Pure states on M2∞

.
On M2:

ϕ1 :

(
a11 a12

a21 a22

)
7→ a11

ϕ2 :

(
a11 a12

a21 a22

)
7→ a22

For f ∈ 2N

ϕf =
⊗

n

ϕf (n)

is in P(M2∞).
In M2∞ , ϕf ∼ ϕg iff {n | f (n) 6= g(n)} is finite.

Fact
If f 6= g then ‖ϕf − ϕg‖ = 2.



Type I algebras

Definition (Kaplansky)

A C* algebra A is of type I if for every irreducible representation
π : A → B(H) we have π[A] ⊇ K(H).

[Not to be confused with type I von Neumann algebras: B(H) is a
type I von Neumann algebra and a non-type-I C* algebra.]
A C* algebra is simple if and only if it has no (closed, two-sided,
self-adjoint) nontrivial ideals.

Lemma
A type I C* algebra has only one irrep up to equivalence if and
only if it is isomorphic to K(H) for some H.

Theorem (Glimm)

If A is a non-type-I C* algebra then there is B < A that has a
quotient isomorphic to M2∞ .



Corollary (Akemann–Weaver, 2002)

If A is non-type-I and has a dense subset of cardinality < 2ℵ0 , then
A has nonequivalent pure states.

Proof.
There are pure states ϕf , f ∈ 2N, such that if f 6= g and
Ad uϕf = Ad vϕg then ‖u − v‖ ≥ 1.



Naimark’s problem

Theorem (Naimark, 1948)

Any two irreps of K(H) are equivalent.

Question (Naimark, 1951)

Is the converse true?

Theorem (Akemann–Weaver, 2002)

Assume ♦. Then Naimark’s problem has a negative solution.



Proof: ♦ and Naimark

Fix hα : α→ ω1 such that for every g : ω1 → ω1 the set
{α | g � α = hα} is stationary.
Find an increasing chain of simple separable unital C* algebras Aα,
α < ω1 and pure state ψα of Aα so that

1. α < β implies ψβ � Aα = ψα,

For each Aα, let {ϕγ
α | γ < ω1} enumerate all of its pure states. If

α is limit, let
Aα = lim−→Aβ.



Now we consider the successor ordinal case, β = α+ 1.

Assume there is ϕ ∈ P(Aα) such that ϕ � Aβ = ϕ
hα(β)
β for all

β < α.
Using lemma, let Aα+1 be such that ψα and ϕ have unique
extensions to Aα+1 that are equivalent.
Since A = Aω1 is unital and infinite-dimensional, A 6∼= K(H ′).



Fix ϕ ∈ P(A).

Claim
{α | ϕ � Aα ∈ P(Aα} contains a club.

Proof.
For x ∈ Aω1 and m ∈ N

{α | ∃ψ1, ψ2 ∈ S(Aα), ϕ =
1

2
(ψ1 + ψ2) and |ϕ(x)− ψ1(x)| ≥ 1

m
}

is bounded in ω1.



Fix h : ω1 → ω1 so that

ϕ � Aα = ϕh(α)
α

for all α.
Let α be such that h � α = hα. Then ϕ � Aα+1 is equivalent to
ψα+1. Since ψα+1 has unique extension to Aω1 , so does ϕ and
they remain equivalent.



Kadison–Singer problem and Anderson’s conjecture

Definition
A masa in B(H) has the extension property (EP) if each of its pure
states extends uniquely to a pure state on B(H).

Every vector state has the unique extension to a pure state, hence
this is a property of masas in the Calkin algebra.

1. Kadison–Singer, 1955: The atomless masa does not have the
EP.

2. Anderson, 1974: CH implies there is a masa in the Calkin
algebra with the EP.



Question (Kadison–Singer, 1955)

Does the atomic masa of B(H) have EP?

A positive answer is equivalent to an arithmetic statement, so let’s
go on.



Fix an orthonormal basis (en) of H, let A be the atomic masa
diagonalized by (en). Each pure state of A is of the form

ϕU (a) = lim
n→U

(aen|en)

for an ultrafilter U on N.

A state on B(H) of the form ϕ
(~ξ)
U is diagonalized (by U , (en)).

Conjecture (Anderson)

Every pure state ϕ of B(H) can be diagonalized.



Recall that on an abelian C* algebra a state is pure iff it is
multiplicative.

Conjecture (Kadison–Singer)

For every pure state ϕ of B(H) there is an atomic masa A such
that ϕ � A is multiplicative.

If ϕ � A is multiplicative, then there is an ultrafilter U such that ϕ
and ϕU agree on A. We can conclude that ϕ = πU if the answer
to the Kadison–Singer problem is positive.



Theorem (Akemann–Weaver, 2005)

CH implies there is a pure state ϕ on B(H) that is not
multiplicative on any atomic masa.



States are coded by ‘noncommutative finitely additive measures.’

Theorem (Gleason)

Assume µ : P(B(H)) → [0, 1] is such that ϕ(p + q) = ϕ(p) + ϕ(q)
whenever pq = 0. Then there is a unique state ϕ on B(H) that
extends µ.



Lemma
If ϕ is a state on A and p is a projection such that ϕ(p) = 1, then
ϕ(a) = ϕ(pap) for all a.

Proof.
By Cauchy–Schwartz

|ϕ((I − p)a)| ≤
√
ϕ(I − p)ϕ(a∗a) = 0

since a = pa + (I − p)a we have ϕ(a) = ϕ(pa), similarly
ϕ(pa) = ϕ(pap).



Definition
A family F of projections in a C* algebra is a filter if

1. for p, q in F there is r ∈ F such that r ≤ p and r ≤ q.

2. for p ∈ F and r ≥ p we have r ∈ F.

A filter generated by X ⊆ P(A) is the intersection of all filters
containing X.



A filter F in P(C(H)) lifts if there is a commuting family X in
P(B(H))) that generates a filter F such that π[F] = F .
Note: If F is a filter in C(H), then

F̃ = {p ∈ P(B(H)) | π[p] ∈ F}

is not necessarily a filter.



Question
Does every maximal filter F in P(C(H)) lift?

Theorem (Anderson)

There are a singular pure state ϕ of B(H), an atomic masa A1,
and an atomless masa A2 such that ϕ � Aj is multiplicative for
j = 1, 2.



Lemma (Weaver, 2007)

For F̃ in P(B(H)) TFAE:

(A) ‖p1p2 . . .pn‖ = 1 for any n-tuple of projections in F̃ and F is
maximal with respect to this property.

(B) (∀ε > 0) for all finite F ⊆ F̃ there is a unit vector ξ such that

‖pξ‖ > 1− ε

for all p ∈ F .

Definition
A family F̃ in P(B(H)) is a quantum filter if the conditions of
Lemma 37 hold.



Theorem (Farah–Weaver, 2007)

Assume F ⊆ P(C(H)). TFAE:

1. F is a maximal quantum filter,

2. F = Fϕ = {p | ϕ(p) = 1} for some pure state ϕ.

Proof.
(1) implies (2). For a finite F ⊆ F and ε > 0 let

XF ,ε = {ϕ ∈ S(B(H)) | ϕ(p) ≥ 1− ε for all p ∈ F}.

If ξ is as in (B) then ωξ ∈ XF ,ε.
Since XF ,ε is weak*-compact

⋂
(F ,ε)XF ,ε 6= ∅. Any extreme point

is a pure state.
(It can be proved that this intersection is a singleton.)
(2) implies (1). If ϕ(pj) = 1 for j = 1, . . . , k, then
ϕ(p1p2 . . . pk) = 1, hence (A) follows.



Lemma
Let (ξn) be an orthonormal basis. If for some n we have
N =

⋃n
j=1 Aj and there is q ∈ F̃ such that

‖P(~ξ)
Aj

q‖ < 1

for all j , then F is not diagonalized by (ξn).



Lemma
Assume (ξn) is an orthonormal basic sequence. There is a partition
of N into finite intervals (Jn) such that for all k

ξk ∈ Span{ei | i ∈ Jn ∪ Jn+1}

(modulo a small perturbation of ξk) for some n = n(k).

For (Jn) as in Lemma 39 let

D~J
= {q | ‖P(~e)

Jn∪Jn+1
q‖ < 1/2 for all n}

Lemma
Each D~J

is dense in P(B(H)).



d = min{|F| | F ⊆ NN is ≤-cofinal}.
t∗ = min{|T| | T ⊆ P(C(H)) \ 0

T is a maximal decreasing well-ordered chain}

Theorem (Farah–Weaver)

Assume d ≤ t∗.1 Then there exists a maximal proper filter in
P(C(H)) that is not diagonalized by any atomic masa.

1CH would do; d <‘the Novák number of P(C(H))’ is best if it makes sense



Pf. By d ≤ t∗, we may choose F so that F ∩ D~J
6= ∅ for all (~J).

Given (ξk), pick (Jn) such that ξk ∈ Jn(k) ∪ Jn(k)+1 for all k. Let

Ai = {k | n(k) mod 4 = i}

for 0 ≤ i < 4.

If q ∈ F ∩ D~J
, then ‖P(~ξ)

Ai
q‖ < 1 for 0 ≤ i < 4.

Corollary (Akemann-Weaver, 2006)

CH implies there is a pure state that is not multiplicative on any
atomic masa.



An extra: Reid’s theorem

An ultrafilter U on N is a Q-point if every partition of N into finite
intervals has a transversal in U .
Recall P

(~e)
X = PX = projSpan{en|n∈X}.

Theorem (Reid)

If U is a Q-point then ϕU � A(~e) has the unique extension to a
pure state of B(H).



Proof of Reid’s theorem

Fix a pure state extension ϕ of ϕU � A(~e) and a ∈ B(H).
Fix finite intervals (Ji ) such that N =

⋃
n Jn and

‖PJmaPJn‖ < 2−m−n

whenever |m − n| ≥ 2 and let X ∈ U be such that

X ∩ (J2i ∪ J2i+1) = {n(i)}

for all i .



Then with Qi = Pn(i) and fi = en(i) we have ϕ(
∑

i Qi ) = 1 and

QaQ =
∑

i

Qia
∑

i

Qi =
∑

i

QiaQi +
∑
i 6=j

QiaQj .

The second summand is compact, and

QiaQi = (afi |fi )fi

therefore if α = limi→U (afi |fi ) we have

lim
X→U

(PXaPX − αPX ) = 0

and ϕ(a) = α.
Hence ϕ(a) = ϕU (a) for all a.
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