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1. Ultrafilters

Convention 1. As is customary in set theory, we identify each natu-
ral number with the set of its predecessors; in particular, 2 = {0, 1}.
We also follow the set-theoretic convention that the set of all natural
numbers is denoted by ω. For any sets X and Y , we write XY for the
set of all functions from Y into X. This convention creates an ambi-
guity when the sets X and Y are numbers, but the context will always
resolve the ambiguity. The cardinality of a set X is denoted by |X|.
The collection of all subsets of a set X, the power set of X, is denoted
by P(X) and is identified, via characteristic functions, with 2X . The
collection of subsets of X that have a specified cardinality k is denoted
by [X]k.

We write c for the cardinality 2ℵ0 of the continuum. The continuum
hypothesis, c = ℵ1, is abbreviated as CH.

When we consider XY as a topological space, the intended topology
is the product topology obtained from the discrete topology on X. We
topologize P(Y ) by its identification with 2Y , and we topologize [ω]ω

as a subspace of P(ω). Thus, two elements of [ω]ω are close to each
other if they have a long initial segment in common.

Definition 2. An ultrafilter on a set X is a family U of subsets of X
such that

(1) ∅ /∈ U ;
(2) X ∈ U ;
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(3) if A ⊆ B ⊆ X and A ∈ U then B ∈ U ;
(4) if A,B ∈ U , then A ∩B ∈ U ;
(5) for all A ⊆ X, either A ∈ U or X − A ∈ U ;
(6) if A ∪B ∈ U , then A ∈ U or B ∈ U .

Remark 3. Some of these six conditions are redundant. The first four
alone define the notion of filter on X. In (4) and (6), the converse
implications are also true by (3). In (5), only one of the two alternatives
can occur, because of (1) and (4). Thus, X−A ∈ U if and only if A /∈ U .
We can summarize these facts as: membership in U respects Boolean
combinations (propositional connectives).

Another way to view an ultrafilter U on X is as a map from the set
2X to 2, or more generally MX → M for any finite set M , namely
the map sending any f : X → M to the unique m ∈ M for which
f−1({m}) ∈ U . The fact that U respects Boolean combinations gener-
alizes: As a function MX →M , it commutes with any k-ary operation
Mk → M and its canonical extension to (MX)k → MX . Conversely,
if U commutes with unary and binary operations on 2, then it is an
ultrafilter, because all k-ary operations 2k → 2 for higher k can be ex-
pressed in terms of unary and binary operations. An interesting result
of Lawvere ([25], see [10, Appendix] for a proof) says that, if we instead
consider maps from 3X to 3, then any map which commutes with just
the unary operations comes from an ultrafilter.

A third way to view ultrafilters is as new quantifiers by defining

(Ux)ϕ(x) ⇐⇒ {x ∈ X : ϕ(x)} ∈ U .
The quantifier (Ux) can be read as “for almost all x (with respect to
U)” or “for U -most x”. Ultrafilter quantifiers (and only those) respect
all propositional connectives.

A fourth view of ultrafilters is as uniform ways to choose limits of
sequences. Given an X-indexed family {px}x∈X of points in a compact
Hausdorff space C and given an ultrafilter U on X, there is a unique
limit of the family along U , denoted by U -limx px, such that every
neighborhood of it contains px for almost all x. In this way, U can
be viewed as an operation that sends every X-indexed family in any
compact Hausdorff space to a point in that space and that commutes
with continuous functions. Conversely, every such operation comes
from a unique ultrafilter in this way.

A fifth view is that an ultrafilter on X is a point in the Stone-Čech
compactification βX of the discrete space X.

Definition 4. An ultrafilter U on X is said to be principal or trivial
if it is {A ⊆ X : q ∈ A} for some q ∈ X.
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The terminology “principal” is imported from ring theory; an ultra-
filter is principal if and only if it is generated by a single set, namely
{q} where q is as in the definition. Also, an ultrafilter is principal if and
only if it contains a finite set, and so an ultrafilter is non-principal if
and only if it contains all cofinite sets. In terms of the various ways to
view ultrafilters, as described above, the principal ultrafilter generated
by {q} is

• the “evaluation” function MX → M that sends each f ∈ MX

to f(q),
• the “substitution” quantifier, where (Ux)ϕ(x) means ϕ(q),
• the operation taking any X-indexed family {px}x∈X to pq, and
• the point q ∈ X regarded as being in βX since X ⊆ βX.

Ultrafilters on X are exactly the maximal (with respect to ⊆) filters
on X. It easily follows, via Zorn’s Lemma, that every filter on X is a
subset of some ultrafilter on X. In fact, Zorn’s Lemma easily gives the
following slightly stronger result.

Proposition 5. Every filter on a set X is the intersection of all the
ultrafilters on X that extend it.

Like any proof using Zorn’s Lemma, the argument for existence of
ultrafilters can be recast as a transfinite induction, which may shed
more light on what is going on in the construction. Well-order the
power set P(X) (the set of all subsets of X) and proceed by transfinite
recursion along this well-ordering, starting with a given filter. At the
step labeled by a particular set A ⊆ X, decide (if it hasn’t already
been decided) whether to put A or X − A into the ultrafilter under
construction. At the end of the inductive process, we have an ultrafilter.

Since the construction appears to involve 2|X| choices, it is reasonable
to expect the following result of Posṕı̌sil [30].

Proposition 6. The number of ultrafilters on an infinite set X is 22|X|
.

Proof. We invoke a theorem of Hausdorff that there is a family F of
2|X| subsets of X such that, for any disjoint finite subfamilies A and B
of F , the intersection of the sets in A and the complements of the sets
in B is nonempty.

Hausdorff’s construction begins by saying it is enough to do this with
X replaced by

X ′ := {(P,Q) : P ⊆ X is finite, Q ⊆ P(P )},
since |X| = |X ′|. Let

F = {{(P,Q) ∈ X ′ : Y ∩ P ∈ Q} : Y ⊆ X}.
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Then, given disjoint finite subfamilies, say {{(P,Q) : Y ∩P ∈ Q} : Y ∈
I+} and {{(P,Q) : Y ∩ P ∈ Q} : Y ∈ I−}, we must find (P,Q) ∈ X ′
such that Y ∩ P ∈ Q for all Y ∈ I+ and Y ∩ P /∈ Q for all Y ∈ I−.
Simply choose P so that all the (finitely many) relevant intersections
Y ∩ P are distinct, and then choose Q to consist of those intersections
where Y ∈ I+.

Now, given a family F (of subsets of X) as in Hausdorff’s theorem,
observe that, for each G ⊆ F , there is a filter containing the sets from
G and the complements of the sets from F − G. Each of these filters
can be extended to an ultrafilter; all these ultrafilters, for different G’s,
are distinct, and there are as many of them as there are G’s, namely
22|X|

.
This proves that there are at least 22|X|

ultrafilters onX; there cannot
be more because an ultrafilter is a subset of P(X), which has only 22|X|

subsets altogether. �

2. Some Partition Theorems

As an application of the quantifier view of ultrafilters we prove (with-
out much work) a weak version of Ramsey’s theorem. Afterward, with
more work, we prove a much stronger result of Nash-Williams, which
implies the full infinitary Ramsey theorem and more. For α ≤ ω and
c, k ∈ ω, let ω → (α)kc be the statement that, if [ω]k is partitioned into
c pieces, then there is an H ⊆ ω such that |H| = α and [H]k ⊆ one
piece.

Theorem 7. For any natural numbers n, k, and c, ω → (n)kc .

Proof. As a preliminary step, fix a nonprincipal ultrafilter U on ω and
notice the implications

(∀x > q)ϕ(x) =⇒ (Ux)ϕ(x) =⇒ (∃x > q)ϕ(x)

for every q ∈ ω.
Now to prove the theorem, view k-element subsets of ω as increasing

k-tuples. Denote the pieces of the partition by C1, . . . , Cc. Then

∀x1∀x2 > x1 · · · ∀xk > xk−1

c∨
i=1

{x1, . . . , xk} ∈ Ci

By the implications noted above, we can replace each ∀ with U , and
the statement is still true. Now push the disjunction over i to the
outside, using the fact that ultrafilter quantifiers respect propositional
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connectives. So
c∨
i=1

(Ux1)(Ux2) · · · (Uxk){x1, . . . , xk} ∈ Ci.

Fix an i such that the ith disjunct is true. Rewrite this disjunct by
renaming variables and introducing dummy variables as follows. For
any subset {r1 < . . . < rk} of size k in {1, . . . , n}, let xl be replaced
with yrl . Let the remaining yj (1 ≤ j ≤ n) be dummy variables, but in-
clude quantifiers (Uyj) over these variables along with the “important”
variables yri . There are as many such formulas as there are k-element
subsets of {1, . . . , n}; they all say the same thing as the ith disjunct
above, but they say it using different choices of the active variables
from among y1, . . . , yn. Form the (highly redundant) conjunction of all
of these, ∧

{r1<···<rk}⊆{1,...,n}

(Uy1) · · · (Uyn){yr1 , . . . , yrk} ∈ Ci.

Using again that ultrafilter quantifiers respect propositional connec-
tives, pull all the quantifiers out of the conjunction. Then use the
implication from U to ∃, noted at the start of this proof, to replace all
the ultrafilter quantifiers with existential quantifiers in the form

∃y1 ∃y2 > y1 · · · ∃yn > yn−1
∧

{r1<···<rk}⊆{1,...,n}

{yr1 , . . . , yrk} ∈ Ci.

This says that there are y1 < y2 < · · · < yn such that all k-element
subsets of {y1, y2, . . . , yn} lie in the same piece Ci of the given partition.

�

The preceding proof relied mainly on the formal properties of ultrafil-
ter quantifiers, in particular their respecting propositional connectives.
With more hands-on work, ultrafilters can yield far stronger partition
theorems, such as the following version of a result of Nash-Williams.
(Recall that [ω]ω is topologized as a subspace of P(ω), which is in turn
topologized by identifying it with the product 2ω of discrete spaces.)

Theorem 8. If [ω]ω is partitioned into an open piece and a closed
piece, then there is an infinite H ⊆ ω such that [H]ω is in one piece.

Proof. Instead of thinking of infinite subsets of ω, we think of infinite
increasing sequences. So [ω]ω is identified as the set of paths through
ω↑<ω, the tree of finite increasing sequences of natural numbers. Fol-
lowing the definition of the topology on [ω]ω, we find that there is a set
M of nodes in the tree ω↑<ω such that the open piece of our partition
consists of the paths that go through a node in M .
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Fix a nonprincipal ultrafilter U on ω.
Mark nodes with ordinals, by the following inductive procedure.

Mark 0 on those nodes which have initial segments in M . For α > 0,
mark α on a node s if and only if s has not been marked with an ordinal
smaller than α and (Un) (s_〈n〉 has been marked with some β < α)
(where β can depend on n).
Case 1: The empty sequence gets marked with some ordinal α.

Pick, in succession, numbers h1 < h2 < h3 · · · such that when you
choose hn, for every F ⊆ {h1, . . . , hn−1}, F ∪ {hn} has a lower mark
than F (unless F had mark 0). We can always do this, since if F
had a nonzero mark, U -most hn will work, and there are only finitely
many F ’s. Any infinite subset of the hi is in the open piece, because,
along the path in ω↑<ω given by this infinite subset, the marks keep
decreasing until they hit 0.
Case 2: The empty sequence is not marked.

Note that if a node is unmarked, U -most of its immediate successors
are unmarked. So we may pick h1 < h2 < h3 < · · · inductively such
that all finite subsequences are unmarked (similarly to the previous
case). For any infinite subset of {h1, h2, . . . }, all initial segments are
unmarked. In particular, they are not marked with 0, so the set is in
the closed piece. �

The preceding theorem immediately implies the following corollary,
the infinite Ramsey Theorem.

Corollary 9. For any k, c ∈ ω, we have ω → (ω)kc .

Proof. An easy induction reduces the general case to the case c = 2.
So suppose [ω]k is partitioned into C0 and C1. Partition [ω]ω into D0

and D1, where H ∈ Di if and only if the set of the first k elements of
H is in Ci. The pieces D0 and D1 are clopen, so there is an infinite H
such that, for some i, [H]ω ⊆ Di, and hence [H]k ⊆ Ci. �

3. Ultrafilter Constructions

In this section, we describe some ways of generating new ultrafilters
from given ones.

Definition 10. Let U be a family of subsets of X and let f : X → Y .
Then f(U) is defined to be the family

f(U) = {A ⊆ Y : f−1(A) ∈ U}.

It is easy to check that if U is a filter, then so is f(U), and if U is an
ultrafilter, then so is f(U). For the time being, we are concerned only
with the ultrafilter case, but the more general situation will arise later.
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In terms of quantifiers, we have

(f(U)y)ϕ(y) ⇐⇒ (Ux)ϕ(f(x)).

The unique continuous extension of f : X → Y to a map of Stone-Čech
compactifications βX → βY sends U to f(U). In terms of operations
on families in compact Hausdorff spaces, f(U) acts like U after a re-
indexing along f ; that is,

f(U)- lim
y
py = U - lim

x
pf(x).

This notion of the image of an ultrafilter under a function leads to
the Rudin-Keisler ordering,1 defined as follows.

Definition 11. An ultrafilter U on X is Rudin-Keisler above an ultra-
filter V on Y , written U ≥RK V , if V = f(U) for some f : X → Y .

This ordering is reflexive and transitive, but not antisymmetric (so
not a partial order). We do, however, have the following result.

Proposition 12. If V ≤RK U ≤RK V, then there is an f such that
f(U) = V and f is one-to-one on a set in U .

Proof. We use the following general lemma, apparently first published
as a problem [21].

Lemma 13. If f : X → X, then X can be decomposed as a disjoint
union X = A0 ∪A1 ∪A2 ∪A3 such that f � A0 is the identity, and for
i = 1, 2, 3, f(Ai) ∩ Ai = ∅.

Corollary 14. If U is an ultrafilter on X and if f : X → X satsifies
f(U) = U , then there is a set in U on which f is the identity function.

Proof. Let A0, A1, A2, A3 be as in the lemma. Being an ultrafilter, U
must contain one of the Ai; fix that value of i. But then, as f(U) = U ,
we also have f−1(Ai) ∈ U . In particular, Ai and f−1(Ai) cannot be
disjoint. So i = 0, A0 ∈ U , and f is the identity on A0, as required. �

Now to prove the proposition, let f and g witness V ≤RK U and
U ≤RK V , respectively. Apply Corollary 14 to g ◦ f , which maps U to
itself. We get a set A ∈ U on which g ◦ f is the identity and therefore
f is one-to-one. �

1There is a more general ordering, the Katětov ordering, defined on filters as
follows. Put F above G in the Katětov order if f(F) ⊇ G. In the case of ultrafilters,
this reduces to the Rudin-Keisler ordering, because, between ultrafilters, ⊇ implies
=.
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Remark 15. The conclusion of the proposition says that, between some
“large” sets inX and Y , f is a bijection. So for most practical purposes,
we can act as if there is a bijection between X and Y sending U to V .
In this case, we say that U and V are isomorphic, written U ∼= V .

Another important construction of ultrafilters is as limits of other
ultrafilters. Special cases include sums and tensor products.

Definition 16. Let {Ui}i∈I be an indexed family of ultrafilters on a
set X, and let V be an ultrafilter on the index set I. The limit of the
Ui’s with respect to V is the ultrafilter

V- lim
i
Ui = {A ⊆ X : {i ∈ I : A ∈ Ui} ∈ V}

on X.

In terms of quantifiers, the definition says that

((V- lim
i
Ui)x)ϕ(x) ⇐⇒ (Vi)(Uix)ϕ(x),

which is easily seen to respect propositional connectives, so V- limi Ui is
an ultrafilter. Also, in terms of limits of families in compact Hausdorff
spaces, limits of ultrafilters yield iterated topological limits:

(V- lim
i
Ui)- lim

x
px = V- lim

i
(Ui- lim

x
px)

Finally, as the terminology suggests, V- limi Ui is the limit, in the topo-
logical sense, of the points Ui along the ultrafilter V in the Stone-Čech
compactification βX.

An important special case of this notion of limit occurs when the
family of ultrafilters Ui is strongly discrete, meaning that they contain
sets Ai ∈ Ui with Ai ∩ Aj = ∅ for i 6= j. The prototypical example
of this is when they are ultrafilters on I × Y , with each Ui containing
the corresponding “fiber” {i}×Y . In this case, one usually works with
the obvious copies on Y of these ultrafilters, and one uses the following
terminology and notation.

Definition 17. Let {Ui}i∈I be an indexed family of ultrafilters on Y ,
and let V be an ultrafilter on the index set I. The sum of the Ui with
respect to V is the ultrafilter

V-
∑
i

Ui = {A ⊆ I × Y : {i ∈ I : {y ∈ Y : 〈i, y〉 ∈ A} ∈ Ui} ∈ V}.

Equivalently, V-
∑

i Ui can be described as V- limimi(Ui), where mi :
Y → I × Y is the injection of the ith fiber, mi(y) = 〈i, y〉. In terms of
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quantifiers,

((V-
∑
i

Ui) 〈i, y〉)ϕ(i, y) ⇐⇒ (Vi)(Uiy)ϕ(i, y).

Notice that the two projections from I×Y to I and to Y send V-
∑

i Ui
to V and to V- limi Ui, respectively.

In the even more special case where all of the Ui are the same ul-
trafilter U , we obtain the tensor product (sometimes called the Fubini
product).

Definition 18. Let V and U be ultrafilters on I and Y , respectively.
Then their tensor product V ⊗ U is the ultrafilter

V ⊗ U = {A ⊆ I × Y : {i ∈ I : {y ∈ Y : 〈i, y〉 ∈ A} ∈ U} ∈ V}.

Thus, V ⊗ U = V-
∑

i U . In terms of quantifiers,

((V ⊗ U)〈i, y〉)ϕ(i, y) ⇐⇒ (Vi)(Uy)ϕ(i, y).

Now consider the case X = I = ω. We observe that for any two
non-principal ultrafilters U ,V on ω, there are at least two ultrafilters on
ω×ω whose projection to the first coordinate is V and whose projection
to the second coordinate is U , namely V⊗U and the reflection of U⊗V
across the diagonal . We can tell these are distinct ultrafilters since the
former contains the set of 〈x, y〉 such that y > x and the latter contains
the set of 〈x, y〉 such that x > y.

Theorem 19 (Puritz [31]). If V ,U are nonprincipal ultrafilters on ω,
then V ⊗U is the only ultrafilter W on ω2 such that the first projection
of W is V, the second is U , and for any f : ω → ω that is not constant
on any set in U , the set of 〈a, b〉 such that a < f(b) is in W.

Limits have the following “associativity” property, which is easily
proved by just writing out the definitions in full (preferably in terms
of quantifiers).

Proposition 20. Let {Uj : j ∈ J} be a J-indexed family of ultrafilters
on a set X, let {Vi : i ∈ I} be an I-indexed family of ultrafilters on J ,
and let W be an ultrafilter on I. Then

(W- lim
i
Vi)- lim

j
Uj =W- lim

i
(Vi- lim

j
Uj).

A theorem of Mary Ellen Rudin says that, if we consider strongly
discrete families of ultrafilters on ω, then this associativity is essentially
the only way for two limits to coincide. Here is the precise statement
of the result.
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Theorem 21 (Rudin [33]). Assume that {Vi : i ∈ ω} and {V ′j : j ∈ ω}
are strongly discrete families of ultrafilters on ω, that U and U ′ are
ultrafilters on ω, and that U- limi Vi = U ′- limj V ′j. Then one of the
following three situations occurs.

• There are ultrafilters Wi such that U ′ = U- limiWi and, for
U-most i, Vi =Wi- limj V ′j.
• There are ultrafilters Wj such that U = U ′- limjWj and, for
U ′-most j, V ′j =Wj- limi Vi.
• U ∼= U ′ via some isomorphism f and, for U-most i, Vi = V ′f(i).

Note that the first two of the three alternatives here make the as-
sumed equation U - limi Vi = U ′- limj V ′j an instance of Proposition 20.

4. Ultraproducts

A frequently useful way to view ultrafilters and study their properties
is as “the things you use to form ultraproducts”. Consider an X-
indexed family of structures, all for the same first-order language, say
Ax = (Ax, R

i
x, F

j
x) for x ∈ X. Here each Ri

x is the interpretation in Ax

of the relation symbol Ri, and similarly for function symbols F j. Given
an ultrafilter U on X, we define the ultraproduct U -prodxAx as follows.
Its underlying set is obtained from the product

∏
x∈X Ax by identifying

two elements f and g of this product when (Ux) (f(x) = g(x)); we write
[f ]U or simply [f ] for the equivalence class of f . The relation symbols
are interpreted by (using a binary relation as a typical example)

Ri([f ], [g]) ⇐⇒ (Ux)Ri
x(f(x), g(x)).

Similarly, the function symbols are interpreted by

F j([f ], [g]) = [h] where h(x) = F j
x(f(x), g(x)) for each x ∈ X.

 Loś’s theorem states that, for any formula ϕ(u, v) (say with two free
variables for notational simplicity),

(U -prodxAx) |= ϕ([f ], [g]) ⇐⇒ (Ux) (Ax |= ϕ(f(x), g(x))).

This is essentially built into the definition of the ultraproduct in the
case of atomic ϕ, and the general case is proved by induction on ϕ.

When U is principal, say generated by {m}, the ultraproduct con-
struction just returns (up to isomorphism) the factor indexed by m;
the isomorphism U -prodxAx → Am sends each [f ] to f(m).

If all the structures Ax are the same A, we write the ultraproduct
as U -prod A and call it the ultrapower of A with respect to U .  Loś’s
theorem implies that the canonical embedding A→ U -prod A, sending
each a ∈ A to the equivalence class of the constant function with value



ULTRAFILTERS AND CARDINAL CHARACTERISTICS 11

a, is an elementary embedding. We sometimes use it to identify A with
an elementary substructure of the ultrapower.

Conversely, given any method to produce an elementary extension of
an arbitrary structure, we obtain a method of producing an ultrafilter
on any set. For any set X, consider the structure X consisting of X and
all relations and functions on X. If X � Y, then each y ∈ Y determines
an ultrafilter on X by {A ⊆ X : Y � A(y)}. This ultrafilter is called
the type of y in Y. The ultrapower of X with respect to the type of
y embeds elementarily into Y by the map [f ] 7→ ∗f(y), where ∗f is
the interpretation in Y of the function symbol that denotes in X the
function f : X → X.

We record, in the following two propositions, how the ultrapower con-
struction interacts with some of the methods in the preceding section
for producing new ultrafilters. The proofs are straightforward verifica-
tions using the definitions and  Loś’s theorem. In the first proposition,
we use the notation ∼=≺ to mean “elementary embedding”, i.e., isomor-
phism to an elementary submodel.

Proposition 22. Let U be an ultrafilter on X, f a function X → Y ,
and {Ay : y ∈ Y } a Y -indexed family of structures, all for the same
language. Then there is an elementary embedding

f(U)-prody Ay
∼=≺ U-prodxAf(x)

sending any [g]f(U) to [g ◦ f ]U .

Proposition 23. Let {Ui : i ∈ I} be an indexed family of ultrafilters
on a set Y , V an ultrafilter on the index set I, and {Ai,y : i ∈ I, y ∈ Y }
and I×Y -indexed family of structures, all for the same language. Then

(V-
∑
i

Ui)-prod〈i,y〉Ai,y
∼= V-prodi (Ui-prody Ai,y)

via an isomorphism sending any [g]V-∑i Ui to [ĝ]V where ĝ(i) = [y 7→
g(〈i, y〉)]Ui for each i ∈ I.

Corollary 24. Let V and U be ultrafilters on I and Y , respectively, and
let {Ai,y} be a family of structures, all for the same language, indexed
by I × Y . Then

(V ⊗ U)-prod〈i,y〉Ai,y
∼= V-prodi (U-prody Ai,y).

Applying the corollary to the case of ultrapowers, where all the struc-
tures Ai,y are the same A, we find that

(V ⊗ U)-prod A ∼= V-prod (U -prod A).
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In this case, the two projection maps from I×Y to I and to Y induce,
by Proposition 22, elementary embeddings of the ultrapowers V-prod A
and U -prod A into (V ⊗ U)-prod A.

For the rest of this section, we specialize to the case of ultrafilters on
ω and ultrapowers of the standard model N of full arithmetic. Here N
is the structure with underlying set ω and with all finitary relations and
functions on ω. Notice that, because the language has symbols for all
relations and functions on ω, every formula is equivalent to an atomic
formula, and, between elementary extensions of N, every embedding is
elementary.

If U is any ultrafilter on ω, the ultrapower U -prod N is generated by
a single element, the equivalence class [id] of the identity function on
ω. Indeed, each element [f ] in U -prod N is ∗f([id]).

Conversely, if an elementary extension A of N is generated by a
single element a, then it is isomorphic to the ultrapower U -prod N,
where U is the type of a in A and where the isomorphism sends any
[f ] ∈ U -prod N to ∗f(a) ∈ A.

Furthermore, any finitely generated extension of N is generated by a
single element and is therefore isomorphic to an ultrapower of N. The
reason is the availability of pairing functions in the language of N; these
allow any finite number of elements to be coded by a single element.
It is sometimes convenient, though, to forgo the coding and work with
more than one generator. For example, if a, b are two elements of an
extension A of N, then they determine an ultrafilter on ω2, their type,
namely U = {X ⊆ ω2 : ∗X(a, b)}, and the submodel they generate is
isomorphic to U -prod N. Under the isomorphism, [f ]U corresponds to
∗f(a, b); in particular, the two projections ω2 → ω correspond to a and
b.

Using these ideas, we can reformulate Theorem 19 as follows.

Corollary 25. Suppose a and b are elements of some C � N, gen-
erating submodels A and B, respectively. Suppose further that all the
nonstandard elements of B are greater than all elements of A. If V
and U are the types of a and b, respectively, then the type of the pair
a, b is V ⊗ U .

Elementary extensions of N are structured into constellations: Two
elements a and b of such a model are in the same constellation if they
generate the same submodel. Equivalently, a and b are in the same
constellation if and only if a = ∗f(b) for some one-to-one function f .

A coarser partition of any elementary extension of N is given by its
skies: Two elements a and b are in the same sky if they generate the
same initial segment submodel (i.e., an initial segment via the ordering
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∗≤ that corresponds to the standard ordering of the natural numbers
in N). Since the downward closure of any submodel is also a submodel,
this is equivalent to a ≤ b ≤ ∗f(a) for some f or vice versa. Skies are
order-convex; that is, if a sky contains a and b then it also contains
every c that is between them in the sense of ∗<. Therefore, the set of
skies in any model has a linear ordering induced by ∗<. This ordering
of the skies corresponds to the inclusion ordering among the initial
segment submodels.

The top sky of U -prod N is the set of [f ]U such that f is finite-to-
one. More generally, for any element a in any elementary extension of
N, every element ∗f(a) in the submodel generated by a is either in the
same sky as a or in an earlier sky; it is in the same sky if and only if f
is finite-to-one on some set in the type of a.

Given two elementary extensions of N, we can amalgamate them,
i.e., embed both of them elementarily into another such model. In ad-
dition, one can specify exactly which parts of the two models are to
be identified in the amalgamation. That is, if A and B are elementary
extensions of N, and if θ : A′ ∼= B′ is an isomorphism between sub-
models A′ � A and B′ � B, then there is a model C with elementary
embeddings α : A→ C and β : B→ C such that α(a) = β(θ(a)) for all
a ∈ A′ but α(A − A′) is disjoint from β(B −B′). In other words, A′

and B′ are identified, along the given isomorphism θ, but nothing else
is identified.

Furthermore, one can also specify arbitrarily the relative ordering
of the skies of A above A′ and the skies of B above B′. (For this
and related results about amalgamation of ultrapowers of N, see [4].)
What one cannot do, though, is to map such a “high” sky of A and
a “high” sky of B into the same sky of C. This last statement is a
consequence of the next proposition, applied to elements a ∈ α(A−A′)
and b ∈ β(B − B′). We state the proposition explicitly and give its
proof, because the idea behind the proof occurs quite frequently in the
theory of ultrafilters on ω.

Proposition 26. If a, b are in the same sky, then there exist finite-
to-one p, q : ω → ω such that ∗p(a) = ∗q(b). Equivalently, if f, g are
finite-to-one on a set in U , there exist finite-to-one p, q with p◦f = q◦g
on a set in U .

Proof. Recall first that any two elements a, b of an elementary exten-
sion of N lie in a submodel isomorphic to an ultrapower of N, namely
the submodel generated by a code c for the pair 〈a, b〉. Furthermore,
the initial segment submodel generated by the larger of a and b also
contains the smaller of the two and therefore the pair code c; that is,
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the generator c of our submodel is in the same sky as the larger of a and
b. In the situation of the proposition, where a and b are in the same
sky, then that sky is the top sky of the ultrapower model generated
by c. Therefore, a and b are represented by finite-to-one functions in
that ultrapower. This shows that the first assertion in the proposition
follows from the second, so we prove the second.

Suppose, without loss of generality, that f and g are finite-to-one
everywhere (the proof is easily modified otherwise). Partition ω into
finite intervals that are so long that, for all x, f(x) and g(x) are always
in the same interval or adjacent intervals. That is, define the first
interval arbitrarily. Then, if f(x) is in the first interval and g(x) is not,
make the second interval long enough to contain g(x), and vice versa.
(This is always possible since f and g are finite-to-one.) Continue.

Color the intervals with three colors, say black, green, red, in a cycli-
cally repeating pattern of length 3. Observe that each of the ultrafilters
f(U) and g(U) contains the union of all intervals of one of the colors, say
black and red, respectively. (If both have the same color, the argument
is even easier.) Make a new partition of ω into intervals, coarser than
the previous one by making cuts only in green intervals. f−1(black)
and g−1(red) are in U , and so their intersection is also in U . If x is
in this intersection, then f and g map to adjacent black or red blocks
of the first partition, and therefore to the same interval of the second
partition. Take p = q to be constant on the intervals of the second
partition. �

Note that Proposition 26 implies that, in any ultrapower of N, the
intersection of any two cofinal submodels is cofinal.

5. Special Ultrafilters

In this section, we describe some ultrafilters with especially nice
properties. Unless stated otherwise, we assume that we are dealing
with non-principal ultrafilters on ω, but the definitions and results
could be transferred along a bijection to ultrafilters on any countably
infinite set.

Definition 27. An ultrafilter U is selective if whenever ω is partitioned
into pieces not in U , there is an A ∈ U such that A meets each piece
in at most one point. Equivalently, any f : ω → ω becomes either
constant or 1-1 when restricted to some set in U .



ULTRAFILTERS AND CARDINAL CHARACTERISTICS 15

The second version of the definition amounts to saying that the
non-standard part of the ultrapower U -prod N is a single constella-
tion. It also shows that selective ultrafilters are exactly the minimal
non-principal ultrafilters under the Rudin-Keisler ordering.

Theorem 28 (Kunen, published in [14]). If U is a selective ultrafilter
on ω, then, for any partition of [ω]2 into two pieces, there is a homo-
geneous set in U , i.e., a set H ∈ U such that [H]2 is included in one
of the pieces. Furthermore, the same is true for any finite number of
pieces and for partitions of [ω]k for any finite k.

Proof of the first assertion. Identifying [ω]2 with the above-diagonal part
{〈x, y〉 : x < y} of ω2, we find that the statement to be proved is equiv-
alent to the statement that the filter H on ω2 generated by [ω]2 and
the sets A×A for A ∈ U is an ultrafilter. Clearly U⊗U is an ultrafilter
extending H; we must show (in the light of Proposition 5) that it is
the only ultrafilter extending H.

Consider, therefore, any ultrafilterW extending H, and consider the
ultrapower W-prod N. It is generated by 〈a, b〉, where a and b are the
equivalence classes of the two projections ω2 → ω. Because W ⊇ H,
we know that a and b both have type U and that a < b. Consider the
submodels A and B generated by a and b, respectively, in W-prod N.
They are copies of U -prod N, and so they each have, because U is
selective, a single constellation of non-standard elements.

If these two constellations, one from A and one from B, are in dif-
ferent skies of W-prod N, then all the nonstandard elements of B
are above all elements of A. Then by Puritz’s result, Corollary 25,
W = U ⊗ U , as desired.

There remains the case that the non-standard constellations of A
and B, which contain a and b, lie in the same sky of W-prod N. In
this case, Proposition 26 provides an element c that is simultaneously
of the forms ∗p(a) and ∗q(b) for some finite-to-one p, q : ω → ω. This c
is therefore in both A and B, and, as it is non-standard, it generates
each of these submodels. That is, A=B. In particular, each of a and
b is in the submodel generated by the other, so a = ∗f(b) for some
f : ω → ω. Since both a and b have type U , we obtain f(U) = U , and
therefore, by Corollary 14, f is the identity on some set in U . That
implies ∗f(b) = b, i.e., a = b, contrary to the fact that a < b. �

The extension of this result to partitions with more than two pieces
is easy. The theorem provides homogeneous sets in U for all the two-
piece coarsenings of a given partition, and we need only intersect these
homogeneous sets.



16 ANDREAS BLASS AND NICHOLAS RUPPRECHT

The extension to partitions of [ω]k for k > 2 requires more work, but
it can be done similarly to the proof for k = 2. It is based on studying
the possible amalgamations of k copies of U -prod N (in place of the
two copies A and B in the preceding proof). See [5] and the references
there for more information about this and related proofs.

The partition property in the first assertion of Theorem 28 easily
implies selectivity. Given a function f on ω, partition [ω]2 by putting
{x, y} into one piece if and only if f(a) = f(b). On a homogeneous set,
f is one-to-one or constant.

Theorem 28 adds to Ramsey’s theorem the information that the ho-
mogeneous sets can always be found in any prescribed selective ultrafil-
ter. Because selectivity is equivalent to this strengthening of Ramsey’s
theorem, selective ultrafilters are often called Ramsey ultrafilters.

Ramsey’s theorem cannot be extended to arbitrary partitions of the
set [ω]ω of infinite subsets of ω. The axiom of choice easily yields a
partition of [ω]ω into two pieces such that, when two infinite sets differ
by a single element, they are in different pieces. Such a partition cannot
have a homogeneous set. Nevertheless, an infinitary partition relation
holds when the partition is sufficiently well-behaved. Recall that we
topologize [ω]ω as a subspace of a product 2ω of discrete spaces; recall
also that a set is called analytic if it is the image of a Borel set under
a continuous mapping. Then we have the following infinitary partition
theorem for selective ultrafilters.

Theorem 29 (Mathias [26]). If U is selective and if [ω]ω is partitioned
into an analytic and a co-analytic piece, then there is a homogeneous
set H ∈ U .

In specific models of set theory, the requirement of analyticity in
this theorem can be relaxed, but, as indicated above, it cannot be
removed altogether (unless one discards the axiom of choice). Mathias
has shown that this partition property holds for all partitions that are
ordinal definable from reals in the model obtained by collapsing to ω
all cardinals below some Mahlo cardinal.

The existence of selective ultrafilters cannot be proved in ZFC; there
are none in the random real model [23]. It follows, however, from CH,
or from Martin’s Axiom, or from c = cov(B) (the minimum number
of meager, or first-category sets needed to cover the real line, also the
minimum number of closed sets with empty interiors needed to cover
the real line). In fact, it is shown in [17] that, under the last of these
assumptions (which is the weakest of the three), any filter on ω that
contains the cofinite sets and is generated by fewer than c sets can be
extended to a selective ultrafilter.
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Forcing with (the separative quotient of) the partial order ([ω]ω,⊆)
produces a selective ultrafilter without adding new reals. It can be used
to prove, from Mathias’s theorem, the earlier result of Silver [36], not
involving ultrafilters in its statement, that is like Mathias’s theorem
except that H is merely required to be infinite, not in any prescribed
ultrafilter.

An important weakening of selectivity is the following, which was
studied even before selectivity [34].

Definition 30. A nonprincipal ultrafilter U is a P-point if every f :
ω → ω becomes either constant or finite-to-one when restricted to some
set in U .

An equivalent characterization is that, for any countably many sets
An ∈ U , there is some B ∈ U that is almost included in each An, i.e.,
B − An is finite for all n. Such a B is called a pseudo-intersection
of the An’s. This notion of P-point is the specialization, to the space
βω − ω of non-principal ultrafilters on ω, of the general topological
notion of P-point, namely a point x such that, for any countably many
neighborhoods of x, there is a single neighborhood included in them
all.

Kunen’s Theorem 28 admits a generalization for P-points U . For the
case of exponent 2, it says that, for each partition of [ω]2 into finitely
many pieces, there exist a set H ∈ U and a function f : ω → ω such
that one piece of the partition contains all pairs {a < b} ∈ [H]2 for
which f(a) < b. For higher exponents, the statement is similar; we get
homogeneity for those subsets of H whose elements are “far apart” as
measured by f .
U is a P-point if and only if U -prod N has only one sky of non-

standard elements.
The existence of P-points, in fact of P-points that are not selective,

follows from CH, or just Martin’s Axiom. ZFC alone does not prove
the existence of P-points.

Definition 31. A non-principal ultrafilter U on ω is a Q-point if every
function that is finite-to-one on a set in U is one-to-one on a set in U .

Thus, an ultrafilter is selective if and only if it is both a P-point and
a Q-point.
U is a Q-point if and only if the top sky of U -prod N is a single

constellation.
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The existence of Q-points follows from CH, or just Martin’s Axiom,
but it is not provable in ZFC. There exist models of ZFC without P-
points [35, 40] and models of ZFC without Q-points [29], but it is an
open problem whether there exists a model without either.

6. Cardinal Characteristics of the Continuum

In this section, we introduce some of the many cardinal character-
istics of the continuum, especially those that have interesting connec-
tions with the theory of ultrafilters. For a general survey of cardinal
characteristics, see [9, 19, 39].

In this context, “the continuum” could mean R, Cantor space 2ω,
Baire space ωω, [ω]ω, etc. These spaces are essentially the same, in
that for any pair, after removal of at most a countable set from each
space, there exists a homeomorphism between the modified spaces. For
those that carry natural measures, the homeomorphism can be taken
to preserve measure as well, provided the total measures of the pair are
equal. Thus, the ambiguity of the terminology “continuum” will cause
no real problems.

The idea of a cardinal characteristic is that for some combinatorial
property, ℵ0 and c behave differently. We can look at the least cardinal
which behaves like c, and this is called the cardinal characteristic asso-
ciated to that property. This is, of course, uninteresting if CH holds,
for then all such cardinal characteristics are equal to c.

Definition 32. In this definition, we work in ωω.

(1) f dominates g if, for all but finitely many n ∈ ω, f(n) ≥ g(n).
(2) The dominating number d is the minimum cardinality of a dom-

inating family – a subset of ωω such that every g is dominated
by an f in the family.

(3) The unbounding number b is the minimum cardinality of an
unbounded family – a subset of ωω not dominated by a single
function.

It is easily provable in ZFC that ℵ1 ≤ b ≤ d ≤ c. Also, b is a regular
cardinal and b ≤ cf(d).

Definition 33. In this definition, we work in [ω]ω.

(1) A set S ⊆ ω splits an infinite A ⊆ ω if both A ∩ S and A − S
are infinite.

(2) The splitting number s is the minimum size of a splitting family
– a family S ⊆ [ω]ω such that for all A ∈ [ω]ω, there is S ∈ S
that splits A.
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(3) The unsplitting (or refining or reaping) number r is the mini-
mum cardinality of an unsplit family – a family R ⊆ [ω]ω such
that no single set splits all the sets in R.

Definition 34. In this definition, we work with subsets of the real line.

(1) The covering number for Baire category cov(B) is the minimum
cardinality of a family of meager sets whose union covers the real
line. Define cov(L) in the same way, except with “(Lebesgue)
measure 0” in place of meager.2

(2) The cofinality of category cof(B) is the minimum cardinality
of a basis for the ideal B of meager sets, i.e., a family of meager
sets such that every meager set is included in one from the
family. Again, the definition is similar for cof(L), replacing
meager with measure 0.

Remark 35. All of these cardinal charaacteristics can be expressed as
the minimum cardinality of a family of reals such that, for a certain
relation, every real is related to a real in the family. (In the case of
meager or measure zero sets, which are not themselves reals, we can
restrict attention to Fσ or Gδ sets, respectively, and these can be coded
by reals.) Note that b and d can be obtained from each other by taking
the negation of the converse of the specified relation. The same is true
for s and r. In this sense, these pairs of cardinals are dual to each
other. The covering and cofinality numbers also have duals, called the
uniformity and additivity numbers, respectively.

Theorem 36 (Ketonen [22]). If d = c, then there exist P-points.

Theorem 37 (Canjar [17]). If cov(B) = d, then there exist Q-points.

Cichoń’s diagram is a diagram showing the ZFC-provable inequali-
ties between ten cardinal characteristics. For any ideal J of sets (in
particular for the ideal B of meager sets and the ideal L of measure-zero
sets) the additivity add(J ) is the dual of cof(J ), i.e., the minimum
cardinality of a family of sets in J whose union is not in J . The uni-
formity non(J ) is the dual of cov(J ), i.e., the minimum cardinality
of a set not in J . An arrow in the diagram from a cardinal k to a
cardinal l means that ZFC proves k ≤ l. Every inequality between two
of these cardinals which is provable in ZFC is represented by an arrow
or a sequence of arrows.

2We use B and L, in honor of Baire and Lebesgue, to denote the ideals of meager
and measure-zero sets, respectively. Other notations for B include K (for “Kate-
gorie”) and M (for “meager”); other notations for L include M (for “measure”)
and N (for “null”).
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cov(L) −−−→ non(B) −−−→ cof(B) −−−→ cof(L)x xx b −−−→ d
xx x

add(L) −−−→ add(B) −−−→ cov(B) −−−→ non(L)

The only further restrictions on the values of these cardinals are
add(B) = min{b, cov(B)} and cof(B) = max{d,non(B)}. In fact, for
any assignment of ℵ1 and ℵ2 to these ten cardinals which respects the
diagram and these two additional restrictions, there is a model of ZFC
where each cardinal has the assigned value; see [3, Chapter 7].

Additionally, r and s interact nicely with the cardinals in Cichoń’s
diagram. In ZFC, r ≥ cov(L), b, cov(B), and s ≤ non(L), d,non(B).

7. Cardinal Characteristics and Ultrafilters

We consider ultrafilters on ω, and as usual assume U is nonprincipal.
The cardinality of U is c. Instead of asking about the cardinality of U ,
we can ask how many sets does it take to generate U (i.e., by closing
under finite intersections and supersets). This number is called the
character of U and denoted by χ(U). Equivalently, it is the minimum
cardinality of a base for U . It is easy to see that χ(U) is always between
ℵ1 and c. In fact, it is at least r, since an ultrafilter base has to be an
unsplit family.

Definition 38. u is the minimum χ(U) over all non-principal ultrafil-
ters U on ω.

By the remarks above, we always have r ≤ u. Goldstern and Shelah
[20] have shown that r < u is consistent with ZFC. However, Aubrey
[1] has shown that r ≥ min{u, d}, so if r < u then d has to be smaller
than u.

While u concerns small characters of ultrafilters, one might also ask
about big characters. That question is easily answered in ZFC.

Proposition 39. There is an ultrafilter U on ω such that χ(U) = c.

Proof. Use the theorem of Hausdorff from the proof of Proposition 6
above, obtaining an independent family F of size c. Let U be an ultrafil-
ter containing all the sets in F and the complements of all intersections
of infinitely many sets from F . It is easy to check that these sets have
the finite intersection property, so such an ultrafilter exists. If U had a
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base of cardinality < c, then, since every A ∈ F contains a set from the
base, infinitely many sets from F would have to contain the same B
from the base. But then B is included in the intersection of infinitely
many sets from F , and so cannot be in U , a contradiction. �

Returning to u, we have a result due to Solomon [37] that b ≤ u:
Given a base for an ultrafilter, consider, for each set in the base, the
function that moves n to the leastm ≥ n in this basis set. The functions
obtained in this way form an unbounded family. Actually, the argument
shows b ≤ r, because all that is used about ultrafilter bases is that
they are unsplit families. The proof shows further that, if F is a filter
containing all cofinite sets and generated by fewer than b sets, then
there exists a partition of ω into finite intervals such that each set in
the filter meets all but finitely many intervals. By applying the function
f that maps all elements of the nth interval to n, we obtain that f(F)
is the filter of cofinite sets.

Filters F with the property that f(F) is the cofinite filter for some
finite-to-one function f are called feeble filters. A theorem of Talagrand
[38] says that these are exactly the filters that are meager as subsets
of P(ω) ∼= 2ω.

Definition 40. A π-base of an ultrafilter U is a family B ⊆ [ω]ω such
that for all X ∈ U , there exists B ∈ B such that B ⊆ X. The π-
character of U , written πχ(U), is the smallest cardinality of a π-base
of U .

Note that the definition of “π-base” differs from that of “base” only
in that a π-base for U need not be a subset of U .

Theorem 41 (Balcar and Simon [2]). The minimum value of πχ(U)
over all non-principal ultrafilters on ω is r.

Proof sketch. The minimum in question is at least r because a π-base
for an ultrafilter is necessarily an unsplit family.

Toward proving the reverse inequality, let us consider under what
circumstances a family B ⊆ [ω]ω can be a π-base for an ultrafilter.
We need that, if a set X has no subset in B, then X cannot be in the
ultrafilter, and so ω−X must be in the ultrafilter. That is, the family C
of all complements of the sets not in B must have the finite intersection
property, so that it can be extended to an ultrafilter. Untangling the
negation and complement, we can state this requirement more simply:
Whenever ω is partitioned into finitely many pieces, at least one piece
must have a subset in B.

An unsplit family R of size r has this property for partitions into
two pieces. We handle more pieces by iterating. Obtain R′ by puting
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a copy of R into each set from R; then R′ has the desired property for
partitions into 4 or fewer pieces. Repeat this idea ω times. �

Another cardinal number naturally associated to an ultrafilter U is
the cofinality of the ultrapower, cf(U -prod N).

Theorem 42 (Canjar [15], Roitman [32]). It is consistent with ZFC
that b � d and for every regular cardinal κ ∈ [b, d], there is U with
cf(U-prod N) = κ.

The model used for the proof is obtained by adding sufficiently many
Cohen reals to a model of CH.

Theorem 43 (Canjar [16]). There is a non-principal ultrafilter U on
ω with cf(U-prod N) = cf(d).

8. Groupwise Density

The groupwise density number g is a modification of a more familiar
characteristic, the distributivity number h. We define them together
to emphasize the similarity.

Definition 44. (1) A family H ⊆ [ω]ω is dense if it is closed under
subsets and every set in [ω]ω has a subset in H.

(2) The distributivity number h is the minimum cardinality of a set
of dense families with empty intersection.

(3) A family G ⊆ [ω]ω is groupwise dense if it is closed under subsets
and, whenever ω is partitioned into finite intervals, some union
of these intervals is in G.

(4) The groupwise density number g is the minimum cardinality of
a set of groupwise dense families with empty intersection.

Remark 45. The distributivity number owes its name to the fact that
it is the smallest cardinal κ for which the forcing ([ω]ω,⊇) is not κ-
distributive, i.e., the smallest κ for which this forcing adjoins a new
function from κ into the ground model.

Every groupwise dense family is dense: Given an infinite set X ⊆ ω,
apply the definition of groupwise density to a partition into intervals
such that each interval contains an element of X. Any infinite union
of intervals from this partition has a subset that is an infinite subset
of X.

It follows immediately that h ≤ g. It is also easy to verify that
h ≤ b, s.

Theorem 46 (Blass and Mildenberger [12]). For all non-principal ul-
trafilters U on ω, we have g ≤ cf(U-prod N).
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Theorem 42 can be interpreted as saying that b and d are, respec-
tively, the only lower and upper bounds on the cofinalities of ultra-
powers U -prod N. The new lower bound g is, in some models, strictly
larger than b, but this does not conflict with Theorem 42 because, in
the Cohen model used there, g = b = ℵ1.

The three cardinals b, g, and s often behave similarly; they are next
to each other in diagrams of cardinal characteristics like that in [9,
Section 11]. Since both b and g are lower bounds for cofinalities of
ultraproducts, it is reasonable to ask whether s is also a lower bound.
(It is ℵ1 in the Cohen model, so this would not contradict Theorem 42.)
This is probably false3 although it was shown in [12] that at most one
cardinal below s can be equal to some cf(U -prodN). Also, at most
one cardinal above r can equal some cf(U -prodN). So if s > r, then at
most two cardinals occur as cofinalities of such ultrapowers.

The definition of g was inspired by three statements which are rather
difficult to satisfy; most of the “usual” models of set theory don’t satisfy
them. The first of these three statements is near coherence of filters
(NCF), which says that, for any two filters F and G on ω (containing all
the cofinite sets), there exist finite-to-one functions f, g such that their
images are coherent – f(F) ∪ g(G) has the finite intersection property
(i.e., generates a filter). Equivalently, we need only consider this for
ultrafilters (coherence is harder to achieve for bigger filters), and once
we’ve done this, we can replace “coherent” with “equal.” Also, we can
assume that f = g, and that f is nondecreasing. By a theorem of
Shelah [13], NCF is consistent with ZFC.

NCF is equivalent to each of the following two statements.

• For every U , there is a finite-to-one f such that χ(f(U)) < d.
[6]
• u < min{cf(U -prodN) : U a non-principal ultrafilter on ω}.

[27]

Remark 47. Any two ultrafilters with bases of size less than d are nearly
coherent. This is proved by an interval argument similar to the ones
we’ve seen before.

The second statement that led up to the definition of g is filter di-
chotomy (FD), which says that, if F is any filter on ω containing the
cofinite sets, then there is a finite-to-one f such that f(F) is either just

3A proof that it is false, by Blass and Mildenberger [12], depends on an earlier
result by Blass and Shelah [13, Section 6], which has an error. Shelah and Milden-
berger have, independently, given corrected proofs of that result, but this work is
not published yet. The proof by Blass and Mildenberger is otherwise correct.
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the filter of cofinite sets or an ultrafilter. It is easy to see that FD im-
plies NCF, by taking F in FD to be the intersection of two ultrafilters.
The consistency of FD was proved by Laflamme [11], by modifying one
lemma in Shelah’s proof of the consistency of NCF.

The third statement is the cardinal characteristic inequality u <
g introduced in [11]. It (and g itself) were found by looking at the
consistency proof of NCF minus the lemma that Laflamme modified.
The inequality u < g encapsulates the result of that argument, and one
can plug in various substitutes for the omitted lemma to get various
consequences of u < g.

We have the implications

u < g =⇒ FD =⇒ NCF.

Mildenberger and Shelah [28] have proved that the second of these
implications is not reversible; whether the first is reversible remains an
open problem.

An equivalent formulation of u < g is semifilter trichotomy, which
says that, for every family F ⊆ [ω]ω, if F is closed upward (under
⊆) and closed under finite changes, then there exists a finite-to-one f
such that f(F) is either the filter of cofinite sets, or an ultrafilter, or
[ω]ω. One direction of the equivalence between semifilter trichotomy
and u < g was proved in [24] and the other direction in [8].

For more information about u < g and its consequences, see [7] and
the references there.

Remark 48. In keeping with the pedagogical character of this paper,
the following bibliography occasionally omits original sources in favor
of general surveys or books. For the original sources not given here, see
the bibliographies of these secondary sources. Good general references
for ultrafilters and cardinal characteristics include [18] and [9, 19, 39],
respectively.
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