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Abstract

Triangle counting is an important problem in graph min-
ing. The clustering coefficient and the transitivity ratio, two
commonly used measures effectively quantify the triangle
density in order to quantify the fact that friends of friends
tend to be friends themselves. Furthermore, several suc-
cessful graph mining applications rely on the number of tri-
angles in the graph.

In this paper, we study the problem of counting triangles
in large, power-law networks. Our algorithm, SPARSI-
FYINGEIGENTRIANGLE , relies on the spectral properties
of power-law networks and the Achlioptas-McSherry spar-
sification process. SPARSIFYINGEIGENTRIANGLE is easy
to parallelize, fast, and accurate.

We verify the validity of our approach with several ex-
periments in real-world graphs, where we achieve at the
same time high accuracy and considerable speedup versus
a straight-forward exact counting competitor.

Finally, our contributions include a simple method for
making link recommendations in online social networks
based on the number of triangles as well as a procedure
for estimating triangles using sketches.

1 Introduction

It is a well known fact in social network analysis that
friends of friends tend to be friends themselves [29]. Trian-
gles are an important indicator of this property. Two mea-
sures that quantify the triangle density of a graph are the
clustering coefficient and the transitivity ratio [23].

Besides the significance of triangles in network analysis
statistics, they also play an important role in graph mining
applications: Eckmann and Moses showed how one can use
triangles in order to uncover the hidden thematic structure
of the web [12] and Beccheti et al. in [6] used the local
distribution of triangles and the clustering coefficient to de-
tect spamming activity. Furthermore, triangle-related power
laws [25] can be used to define outliers in a graph with re-
spect to triangles.

In this paper we focus on the problem of counting trian-
gles in large networks. The main contribution of this work
is a novel method for counting triangles in a large power-
law network: we show how one can sparsify the graph
by converting it into another weighted graph, with signif-
icantly smaller number of edges, in order to count the num-
ber of triangles in the sparse graph with a recently intro-
duced method, called EIGENTRIANGLE[25]. Furthermore,
our method is easy to parallelize since it uses only matrix-
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Symbol Definition
G Undirected simple graph
dmax maximum node degree
∆ total number of triangles
∆′ EIGENTRIANGLE’s estima-

tion of ∆
m, n Number of edges and nodes.
[n] = (1..n) Node ids
A Adjacency matrix
A(k) optimal k-rank approxima-

tion
of matrix A

λi top-i-th eigenvalue (absolute
value)

~Λk = [λi]i=1..k k top eigenvalues
p sparsification parameter

(probability of keeping an
edge)

Table 1. Definitions of symbols and acronyms

vector multiplications, easy to implement, and most impor-
tantly gives considerable speedups versus a straight-forward
competitor. Finally, we validate the validity of our approach
in several real world networks, where we achieve important
speedups while being very accurate.

The outline of the paper is as follows: in section 2 we
present briefly the related work, in section 3 we describe
the proposed algorithm and in section 4 we show the exper-
imental results. In section 5 we present a procedure for es-
timating the number of triangles using sketches and in sec-
tion 6 an application of triangles for link recommendation
in social networks. We conclude in section 7.

2 Background and Related Work

In this section we describe briefly existing work on the
problem of counting triangles and the Achlioptas-McSherry
low rank approximation algorithm. In the rest of the paper,
we use the notation of Table 1.

LetG(V,E), n=|V |, m=|E| be an undirected graph with-
out self-edges. A triangle is defined as a three node fully
connected subgraph of G.

Exact Counting Methods. The obvious way to count the
number of triangles in a graph is to examine each of the

(
n
3

)
combinations of nodes and check whether they form a trian-
gle or not. As the procedure suggests, the time complexity
is O(n3).

Since the problem of counting triangles can be reduced

to matrix multiplication, the complexity of counting trian-
gles can be reduced to O(n2.376) [9], which is the lowest
time complexity. Alon, Yuster and Zwick in [4] described
an algorithm running in O(m

2ω
ω+1 ) ⊂ O(m1.41) time and

Θ(n2) space, which is prohibitive even for graphs of mod-
erate size.

Therefore, listing methods [24] are preferred instead of
matrix-multiplication based methods. Such methods are the
NODEITERATOR and the EDGEITERATOR. NODEITERA-
TOR considers each one of the n nodes and examines which
pairs of its neighbors are connected. The time complexity of
the NODEITERATOR is O(nd2

max). This is a significant im-
provement over the brute-force approach when the graph is
sparse. The EDGEITERATOR algorithm computes for each
edge the number of triangles that contain it. The time com-
plexity of this algorithm is O(mdmax). Both methods are
equivalent asymptotically [24]. Schank and Wagner in [24]
propose the forward algorithm with running time Θ(m

3
2 )

and space complexity O(m). A nice survey and the state-
of-the-art algorithms are described in [19].

Approximate Counting Algorithms. In the streaming
approach, we restrict ourselves to one or at most a con-
stant number of passes over the data. The goal it to output
an accurate estimate of the number of triangles with high
probability. Bar-Yossef, Kumar and Sivakumar showed in
[5] how one can approximate the number of triangles by us-
ing the Alon-Matias-Szegedy [3] method for approximating
frequency moments. New streaming algorithms were intro-
duced in [7].

In [6], Becchetti, Boldi, Castillo and Gionis introduced
the semi-streaming model to solve the local triangle count-
ing problem. Their method relies on the locality sensitivity
hashing concept. In contrast to the streaming model, this
model relaxes the strict restriction of the constant number of
passes over the data. Instead it performsO(log(n)) sequen-
tial scans over the edge file. Finally, in [26, 27] an efficient
combinatorial algorithm which tosses a coin for each edge
was introduced and analyzed.

EIGENTRIANGLE. Recently, Tsourakakis gave two ap-
proximation algorithms in [25] for counting the total num-
ber of triangles and the triangles per node. It was ob-
served that a low-rank approximation of the adjacency ma-
trix yields in many real-world networks a fast, accurate, and
parallelizable method for counting triangles in power-law
networks. The first theorem in [25], which is of interest to
us in this work, is the following:

∆(G) =
1
6

n∑
i=1

λ3
i (1)

.
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Figure 1. An ideal scenario for SPARSI-
FYINGEIGENTRIANGLE : Figure shows the ter-
mination criterion for SPARSIFYINGEIGENTRI-
ANGLE . Plot of the triangle estimate at the
i-th iteration versus i. The algorithm decides
at the k-th iteration to stop since its estimate
did not change significantly from the k-th to
the (k + 1)-st iteration. As we see from the
plot, the estimate in the circle is close to the
actual value of the number of triangles.

Achlioptas-McSherry Low Rank Approximation Algo-
rithm Approximating a matrix with a low rank matrix is
a desired task in many applications; see [28, 10]. Since
computing the optimal solution is expensive, approximate
solutions are used in practice; see [11] and [15]. Achlioptas
and McSherry showed in [1] how to obtain a matrix Â has
the following properties with high probability:∣∣∣∣∣∣A− Â(k)

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣A−A(k)

∣∣∣∣∣∣
2

+O((
n

p
)

1
2 ) (2)

∣∣∣∣∣∣A− Â(k)
∣∣∣∣∣∣
F
≤
∣∣∣∣∣∣A−A(k)

∣∣∣∣∣∣
F

+O((
n

p
)

1
4

∣∣∣∣∣∣Â(k)
∣∣∣∣∣∣ 12
F

(3)

These equation reveal the existence of a matrix Â(k) for a
given k “close” to the optimal A(k) with respect to both the
2-norm and the Frobenius norm. Furthermore, they showed
how one can obtain the Â in a very simple way: toss a biased
coin for each entry Aij of the matrix and with probability p
keep that specific entry. If Aij is kept, it is set equal to Aij

p ,
otherwise it is set to 0.

3 Proposed Method

The method builds on the top of the EIGENTRIANGLE
and Achlioptas-McSherry ideas. These ideas are: (a) A low

Require: Adjacency matrix A (nxn)
Require: Tolerance tol
Require: Sparsification parameter p
Output: ∆′(G) global triangle estimation
{ Stage 1: Achlioptas-McSherry Sparsification }
for all (i, j) s.t A(i, j) 6= 0 do

Toss a biased coin with success probability p
if success then
Â(i, j)← A(i,j)

p
end if

end for
{ Stage 2: EIGENTRIANGLE}
λ1← LanczosMethod(Â, 1)
~Λ← [λ1]
i← 2 {initialize i, ~Λ}
repeat
λi ← LanczosMethod(Â, i)
~Λ←

[
~Λ λi

]
i← i + 1

until 0 ≤ |λ3
i |∑i

j=1 λ
3
j

≤ tol

∆′(G)← 1
6

∑i−1
j=1 λ

3
j

return ∆′(G)

Algorithm 1: The SPARSIFYINGEIGENTRIANGLE
algorithm

rank approximation of the adjacency matrix gives a good
estimate of the number of triangles in the graph. (b) We can
keep a small percentage of the total edges of the graph and
keep the top eigenvalues of the sparsified graph very close
to the ones of the initial graph.

Our algorithm, SPARSIFYINGEIGENTRIANGLE , takes
two parameters, the tol parameter and the sparsification pa-
rameter p, as can be seen from the pseudocode. As we see
the algorithm works in two stages. First it performs one
pass over the edges of the graph (non-zero entries of the ad-
jacency matrix). For each edge we toss a biased coin with
probability p of keeping an edge. If the edge is kept we
attach a weight of 1

p to that edge. Therefore, in expecta-
tion, at the end of the pass, we keep pm edges in total, all
of them weighted with value equal to 1

p . After the sparsi-
fication stage, the algorithm moves into the EIGENTRIAN-
GLE stage. In this phase, we perform an iterative eigen-
computation on the sparse adjacency matrix Â until we ob-
serve that the cube of the absolute value of the eigenvalue
being computed is significantly smaller than the estimate of
triangles made until then. This is exactly the intuition be-
hind the tol parameter: stop iterating when the eigenvalue
just computed does not contribute significantly to the esti-
mate. The intuition behind this stopping criterion is shown
in figure 1.
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The algorithm used in the eigen-computation is the
Lanczos method, an efficient method for finding the top
eigenvalues in sparse, symmetric matrices. Golub and Van
Loan in [17] provide an excellent treatment of Lanczos
method. One of the important properties of Lanczos is that
the number of passes depends on the spectral gaps of the
eigenvalues to be computed. In our case due to the power-
law that holds for the top-eigenvalues [13, 21, 8] Lanczos
converges fast [18].

When the iteration stops, the algorithm outputs the es-
timate of the number of triangles in the graph as the sum
of the cubes of the computed eigenvalues divided by 6, in
accordance with the EIGENTRIANGLEtheorem [25].

Our algorithm, SPARSIFYINGEIGENTRIANGLE works
for many real-world networks very fast in practice, due to
the following properties:

1. Top eigenvalues follow a power law which implies the
following desirable properties:

• Few eigenvalues contribute a lot to the number of
triangles.

• Cubes amplify this even more.

• Lanczos method converges fast.

2. The rest of the eigenvalues are almost symmetric
around zero and therefore they can be discarded since
the sum of their cubes will not contribute significantly
to the number of triangles.

These properties are illustrated in figure 2 where we see
the Gershgorin circles which are simple upper bounds on
the eigenvalues, and are in accordance with the observations
made by Farkas, Derenyi, Barabasi, and Vicsek in [14].

4 Experiments

The graphs we used in our experiments are described
in Table 2. We implemented all our algorithms in MAT-
LAB and the experiments ran on a 4GB RAM, Intel(R)
Core(TM)2 Duo CPU at 2.4GHz Windows Vista machine.
We report the results of our method in terms of the speedup
vs. the NODEITERATOR algorithm.

Nodes Edges Description
404,733 2,110,078 Flickr
13,332 148,038 Reuters news,

Sept 9-11,2001.
13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS

Table 2. Order and size of networks used.

In order to avoid running into dilemmas regarding the
choice of the tolerance parameter, we adapt the empirical

Figure 2. Gershgorin circles for a small graph
(airports) on the complex plane. As we see
from the plot, all eigenvalues lie on the real
axis due to the symmetry of the adjacency
matrix, most of them are almost symmetric
around zero, and a few ones are detached
from the rest. The top eigenvalue is denoted
with red, the second and third with purple and
so are the corresponding circles.

rule-of-thumb from [25], where it was observed in a wide
range of experiments that a) typically a 6.2 rank approx-
imation per average is good enough to acquire more than
95% accuracy and b) the maximum number of eigenvalues
needed was 23. Therefore, in our experiments we compute
for each graph the top-30 eigenvalues, even if less eigen-
values can provide an accurate estimation. The results are
shown in figure 3. For each dataset, we plot the accuracy
and the speedup vs. the NODEITERATOR for the esima-
tion resulting after computing one to thirty top eigenvalues.
Similar results are obtained for other graphs of about the
same size as well, which are omitted here due to the limited
space. The plots presented are representative of what we
can see whe SPARSIFYINGEIGENTRIANGLE is run (e.g.,
different scenarios that can occur in the convergence of the
estimate towards the real value).

These plots reveal the following facts: 1) Even when
we keep via the Achlioptas-McSherry sparsification a small
percentage, e.g, 10%, of the graph edges the eigenvalues re-
main very close to the real ones. 2) Few top eigenvalues
are enough to get a good estimate of the total number of
triangles in the graph. 3) Speedups, even for graphs with
few tenths of thousand or few million edges, are impor-
tant. 4) The expected trend of significant savings as the
number of non-zeros elements of the matrix gets smaller
is not clearly observed and this is due to the implementa-
tion properties of MATLAB’s eigensolver. However, this
phenomenon should be eliminated when our algorithm is
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applied to larger graphs.

5 Theoretical Ramifications: Counting Tri-
angles with Sketches

In this section, we describe how one can use existing
theory from the streaming algorithms literature to estimate
the number of triangles in the graph G.

Theorem 1 Given a graph G(V,E) the number of trian-
gles that edge (i, j) ∈ E participates in, is given by the
following equation:

δ(i,j) =
√
didj

1−
||A

(i)
√
di
− A(j)√

dj

||2

2

 (4)

where A(k) is the k-th column of the adjacency matrix A
and dk is the degree of node k.

Proof 1 The following three observations hold:

1. The inner product
〈
A(i), A(j)

〉
when (i, j) ∈ E(G) is

equal to δ(i,j).

2. The following simple identity which holds for any two
vectors a, b:

〈a, b〉 = ||a||||b||
(

1−
|| a

||a||−
b

||b|| ||
2

2

)
3. ||A(i)||2 = di for i = 1 . . . n.

The theorem follows directly by the above simple obser-
vations.

We use the above observation and existing work on pre-
serving inner products [2, 3, 16] to estimate the number
of triangles that each edge participates in. We provide
the necessary definitions, the full analysis can be found
in [16]. Let ε be the distortion parameter, δ the proba-
bility of algorithm’s failure and η a failure threshold. An
atomic sketch of a vector a is the dot product 〈a, r〉 where
r is a random vector containing ±1 valued random vari-
ables. A sketch of the vector a is a vector b = [b1, . . . , bk]
where k = O(log n

δ ) and each bi is an atomic sketch, i.e.,
bi = 〈a, ri〉 for i = 1 . . . k.

Lemma 1 Let X be the O(log 1
δ )-wise median of O( 1

ε2 -
wise means of independent copies of

(
∑
m

Amir
k
m)(
∑
m

Amjr
k
m) (5)

Then, the following holds:

|X − δij | ≤ ε
√
didj (6)

with probability 1-δ.

The above analysis suggests the following simple proce-
dure:

1. For each column A(i) i = 1 . . . n create a sketch of
size O(log n

δ ).

2. For each edge (i, j) estimate the number of triangles
δij using the inner product of the sketches.

The above procedure does not produce a (1± ε) guaran-
tee for the number of triangles. However, it can produce a
good estimate of the number of triangles for dense graphs
where the cosines of the vector columns are large, i.e., the
vectors are not close to being orthogonal (this intuition is
quantified by parameter η, see [16]). The exact details of
how to store and generate vectors rj are presented in [16]
and the references therein.

6 Application: Triangle-Based Link Recom-
mendation in Online Social Networks

Online social networks, e.g, Facebook, LinkedIn, typi-
cally offer a utility/application which suggests a small num-
ber of links to the user that are of potential interest. A nat-
ural problem is the following, known as link recommenda-
tion in literature; see [22, 20] as well as references therein:

• Input: Graph G(V,E) (undirected, unweighted), node
i, budget of k link recommendations.

• Output: Nodes i1, . . . , ik

Nodes i1, . . . , ik will be the recommended links for node
i. A natural, simple criterion for link recommendation in
social networks which is based on the face that friends of
friends tend to make good recommendations is the follow-
ing: Recommend the links which create as many triangles
as possible.

A simple algorithm implementing the above principle is
the following:

1. Find S = V −N , where N = {j1, . . . , jdi
} is the set

of the di neighbors of node i.

2. For every node v ∈ S compute the inner product
〈A(i), A(v)〉.

3. Sort the |S| inner products and choose nodes
v1, . . . , vk which result in the top-k inner products.

Intuitively, when the inner product of the columns
A(i), A(v) is large, then nodes i, v share many common
neighbors and thus node v is according to our proposed
principle a good candidate for link recommendation. Re-
garding the first step of the proposed method, if the graph
has a large number of nodes then a more efficient algorithm
would be to find two step away neighbors’ set S′, S′ ⊆ S
and apply the above procedure on S′.
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7 Conclusions

In this follow-up work, we introduced the SPARSI-
FYINGEIGENTRIANGLE , a fast, parallelizable algorithm
that can be used in cases where the graph of interest does not
fit in the main memory. The main idea of the algorithm is
to use a low-rank approximation of the matrix which is gen-
erated via the Achlioptas-McSherry [1] sparsification of the
adjacency matrix to compute the number of triangles based
on the EIGENTRIANGLE algorithm [25]. Furthermore, we
show that even when keeping 10% of the graph edges one
can compute the number of triangles in a very accurate and
fast way.

Finally, we introduced a natural method of making link
recommendations in online social networks and a procedure
for estimating the number of triangles using sketches. The
experimental evaluation of both is a topic for future research
in the context of real-world networks.
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Figure 3. Experimental Results for four different datasets. (a) Reuters (b) AS CAIDA (c) AS Oregon
(d) Flickr. Observe the following points: (1) the high accuracy obtained in the estimate after the top-5
eigenvalues, (2) the descending “oscillation” that moves towards the true value in different ways (3)
the important speedups that we obtain while being accurate.
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