

Large Graph Mining: Power Tools and a Practitioner's guide

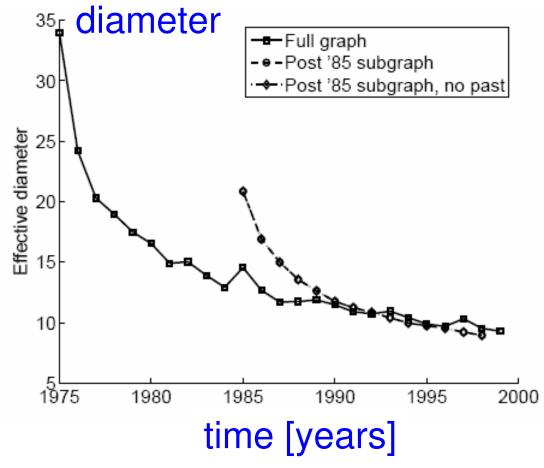
Christos Faloutsos
Gary Miller
Charalampos (Babis) Tsourakakis
CMU

Outline

- Introduction Motivation
- Task 1: Node importance
- Task 2: Community detection
- Task 3: Recommendations
- Task 4: Connection sub-graphs
- Task 5: Mining graphs over time
- Task 6: Virus/influence propagation
- Task 7: Spectral graph theory
- Task 8: Tera/peta graph mining: hadoop
- Observations patterns of real graphs
 - Conclusions

Observations – 'laws' of real graphs

- Observation #1: small and SHRINKING diameter
- Observation #2: power law / skewed degree distributions
- Observation #3: power laws in several aspects
- Observation #4: communities


Observation 1 – diameter

- Small diameter 'six degrees'
- ... and the diameter SHRINKS as the graph grows (!)

Diameter - "Patents"

- Patent citation network
- 25 years of data

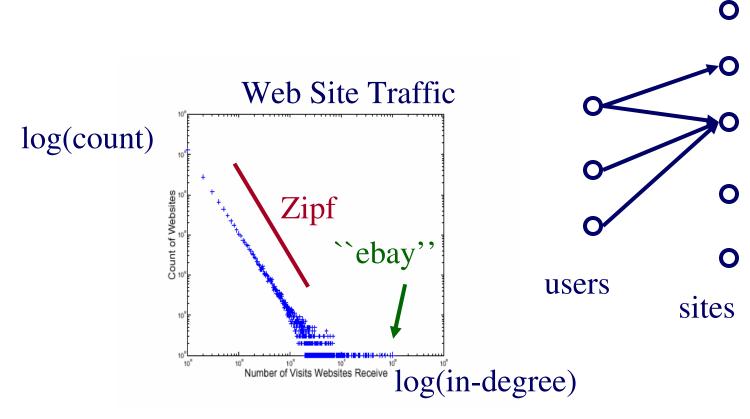
Observation 1 – diameter

- Small diameter 'six degrees'
- ... and the diameter SHRINKS as the graph grows (!)

Practical implication: BFS may die:

- 3-step-away neighbors => half of the graph!

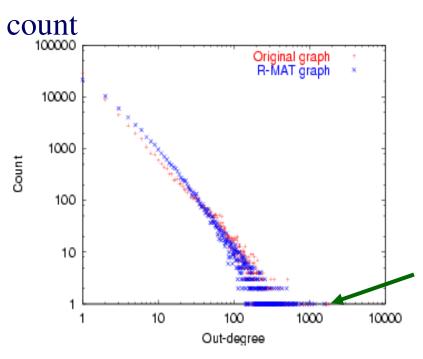
Observations 2 – degree distribution


Skewed degree distribution

- Most nodes have degree 1 or 2
- ... but they probably have a neighbor with degree 100,000 or so (!)

Degree distributions

web hit counts [w/ A. Montgomery]



KDD'09

Faloutsos, Miller, Tsourakakis

epinions.com

who-trusts-whom [Richardson + Domingos, KDD 2001]

trusts-2000-people user

(out) degree

Observation 2 – degree distributions

Skewed degree distribution

- Most nodes have degree 1 or 2
- ... but they probably have a neighbor with degree 100,000 or so (!)

Practical implications:

- May need to delete/ignore those high degree nodes
- Could probably also trim the 1-degree nodes, saving significant space and time

Observation 3 – power laws

Power-laws / skewed distributions in everything:

- Most pairs: within 2-3 steps; but, some pair:
 - ~20 or more steps away
- Triangles: power laws[Tsourakakis'08]
- # of cliques: ditto [Du+'09]
- Weight vs degree: ditto [McGlohon+'08]

Observation 4 – communities

• 'Negative dimensionality' paradox [Chakrabarti+'04]

Practical implication:

Graphs may have no good cuts

Conclusions

- 0) Graphs appear in numerous settings
- 1) Singular / eigenvalue analysis: valuable
 - Fixed points random walks importance
 - Eigenvalue and epidemic threshold
 - Laplacians -> communities

Conclusions – cont'd

- 2) Random walks -> proximity
 - Recommendations, auto-captioning, etc
 - Fast algo's, through Sherman-Morrison
- 3) Tera-byte scale graphs: hadoop
- 4) Beware: counter-intuitive properties
 - small diameters; power-laws; possible lack of good cuts

Acknowledgements

Funding:

IIS-0705359, IIS-0534205, DBI-0640543, CNS-0721736

PITA (PA Inf. Tech. Alliance)

Acknowledgements - foils

• Kolda, Tamara (tensors)

• Sun, Jimeng (tensors)

THANK YOU!

Christos Faloutsos www.cs.cmu.edu/~christos

Gary Miller www.cs.cmu.edu/~glmiller

Charalampos (Babis) Tsourakakis www.cs.cmu.edu/~ctsourak

www.cs.cmu.edu/~christos/TALKS/09-KDD-tutorial/