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Outline
• Reminders

• Adjacency matrix

– Intuition behind eigenvectors: Eg., Bipartite Graphs

– Walks of length k

• Laplacian

– Connected Components

– Intuition: Adjacency vs. Laplacian

– Cheeger Inequality and Sparsest Cut: 

• Derivation, intuition

• Example

• Normalized Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-2
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Matrix Representations of G(V,E)

Associate a matrix to a graph:

• Adjacency matrix

• Laplacian

• Normalized Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-3

Main focus
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Recall: Intuition

• A as vector transformation
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Intuition

• By defn., eigenvectors remain parallel to 
themselves (‘fixed points’)
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Intuition

• By defn., eigenvectors remain parallel to 
themselves (‘fixed points’)

• And orthogonal to each other
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Keep in mind!

• For the rest of slides we will be talking for 

square nxn matrices

and symmetric ones, i.e,

KDD'09 Faloutsos, Miller, Tsourakakis P7-7
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Adjacency matrix

KDD'09 Faloutsos, Miller, Tsourakakis P7-9

A=

1

2 3

4

Undirected
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Adjacency matrix

KDD'09 Faloutsos, Miller, Tsourakakis P7-10

A=
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2 3

410
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Undirected Weighted
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Adjacency matrix

KDD'09 Faloutsos, Miller, Tsourakakis P7-11

1

2 3

4

Observation

If G is undirected,

A = AT

Directed
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Spectral Theorem

Theorem [Spectral Theorem]

• If M=MT, then

KDD'09 Faloutsos, Miller, Tsourakakis P7-12
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Spectral Theorem

Theorem [Spectral Theorem]

• If M=MT, then

KDD'09 Faloutsos, Miller, Tsourakakis P7-13
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Eigenvectors:

• Give groups

• Specifically for bi-partite graphs, we get 

each of the two sets of nodes

• Details:
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Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-16

Any graph with no cycles of odd length is bipartite

Q1: Can we check if a graph is bipartite

via its spectrum?

Q2: Can we get the partition of the vertices

in the two sets of nodes?

1 4

2 5

3 6

K3,3
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Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-17

Adjacency matrix 

where

Eigenvalues:

1 4

2 5

3 6

K3,3

Λ=[3,-3,0,0,0,0]



CMU SCS

Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-18

Adjacency matrix 

where
1 4

2 5

3 6

K3,3

Why λ1=-λ2=3?

Recall: Ax=λx, (λ,x) eigenvalue-eigenvector
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Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-19
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3 6
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233=3x1

Value @ each node: eg., enthusiasm about a product
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Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-20

1 4

2 5

3 6
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1

3=3x1

1-vector remains unchanged (just grows by „3‟ = l1 )
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Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-21

1 4

2 5

3 6
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1 4

5
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1

1

3=3x1

Which other vector remains unchanged?
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Bipartite Graphs

KDD'09 Faloutsos, Miller, Tsourakakis P7-22
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Bipartite Graphs

• Observation

u2 gives the partition of the nodes in the two 

sets S, V-S!

KDD'09 Faloutsos, Miller, Tsourakakis P7-23

S V-S

Theorem: λ2=-λ1 iff G bipartite. u2 gives the partition.

Question: Were we just “lucky”? Answer: No

65321 4
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Walks

• A walk of length r in a directed graph:

where a node can be used more than once.

• Closed walk when:

KDD'09 Faloutsos, Miller, Tsourakakis P7-25

1

2 3

4

1

2 3

4

Walk of length 2

2-1-4

Closed walk of length 3

2-1-3-2
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Walks

Theorem: G(V,E) directed graph, adjacency 

matrix A. The number of walks from node u 

to node v in G with length r is (Ar)uv 

Proof: Induction on k. See Doyle-Snell, p.165

KDD'09 Faloutsos, Miller, Tsourakakis P7-26
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Walks

Theorem: G(V,E) directed graph, adjacency 

matrix A. The number of walks from node u 

to node v in G with length r is (Ar)uv 

KDD'09 Faloutsos, Miller, Tsourakakis P7-27
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Walks

KDD'09 Faloutsos, Miller, Tsourakakis P7-28

1

2 3

4

1

2 3

4i=2, j=4
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Walks

KDD'09 Faloutsos, Miller, Tsourakakis P7-29
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Walks

KDD'09 Faloutsos, Miller, Tsourakakis P7-30

1

2 3

4

1

3

4

2

Always 0,

node 4 is a sink
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Walks

Corollary: If  A is the adjacency matrix of 

undirected G(V,E) (no self loops), e edges  

and t triangles. Then the following hold:

a) trace(A) = 0 

b) trace(A2) = 2e

c) trace(A3) = 6t

KDD'09 Faloutsos, Miller, Tsourakakis P7-31
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Walks

Corollary: If  A is the adjacency matrix of 

undirected G(V,E) (no self loops), e edges  

and t triangles. Then the following hold:

a) trace(A) = 0 

b) trace(A2) = 2e

c) trace(A3) = 6t

KDD'09 Faloutsos, Miller, Tsourakakis P7-32

Computing Ar may be

expensive!
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Remark: virus propagation

The earlier result makes sense now:

• The higher the first eigenvalue, the more 

paths available ->

• Easier for a virus to survive
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Main upcoming result

the second eigenvector of the Laplacian (u2)

gives a good cut:

Nodes with positive scores should go to one 

group

And the rest to the other
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Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-36

L= D-A=
1

2 3

4

Diagonal matrix, dii=di
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Weighted Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-37
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Connected Components

• Lemma: Let G be a graph with n vertices 

and c connected components. If L is the 

Laplacian of G, then rank(L)= n-c. 

• Proof: see p.279, Godsil-Royle

KDD'09 Faloutsos, Miller, Tsourakakis P7-39
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Connected Components

KDD'09 Faloutsos, Miller, Tsourakakis P7-40

G(V,E)

L=

eig(L)=

#zeros = #components

1 2 3

6

7 5

4
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Connected Components

KDD'09 Faloutsos, Miller, Tsourakakis P7-41

G(V,E)

L=

eig(L)=

#zeros = #components

1 2 3

6

7 5

4

0.01

Indicates a “good cut”
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Adjacency vs. Laplacian 

Intuition

KDD'09 Faloutsos, Miller, Tsourakakis P7-43

V-S
Let  x be an indicator vector:

S

Six

Six

i

i





 if ,0

 if ,1

Consider now y=Lx
k-th coordinate
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Adjacency vs. Laplacian 

Intuition

KDD'09 Faloutsos, Miller, Tsourakakis P7-44

Consider now y=Lx

G30,0.5

S

k
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Adjacency vs. Laplacian 

Intuition

KDD'09 Faloutsos, Miller, Tsourakakis P7-45

Consider now y=Lx

G30,0.5

S

k
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Adjacency vs. Laplacian 

Intuition

KDD'09 Faloutsos, Miller, Tsourakakis P7-46

Consider now y=Lx

G30,0.5

S

k

k

Laplacian: connectivity, 

Adjacency: #paths
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Why Sparse Cuts?

• Clustering, Community Detection

• And more: Telephone Network Design, 

VLSI layout, Sparse Gaussian Elimination, 

Parallel Computation

KDD'09 Faloutsos, Miller, Tsourakakis P7-48

1

2 3
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6 7
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9

cut
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Quality of a Cut

• Isoperimetric number φ of a cut S:

KDD'09 Faloutsos, Miller, Tsourakakis P7-49

1

2 3

4

#edges across
#nodes in smallest 

partition
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Quality of a Cut

• Isoperimetric number φ of a graph = score 

of best cut:

KDD'09 Faloutsos, Miller, Tsourakakis P7-50

1

2 3

4

and thus
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Quality of a Cut

• Isoperimetric number φ of a graph = score 

of best cut:

KDD'09 Faloutsos, Miller, Tsourakakis P7-51

1

2 3

4

Best cut:     hard to find

BUT:          Cheeger’s inequality

gives bounds

l2:              Plays major role

Let’s see the intuition behind l2
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Laplacian and cuts - overview

• A cut corresponds to an indicator vector 

(ie., 0/1 scores to each node)

• Relaxing the 0/1 scores to real numbers, 

gives eventually an alternative definition of 

the eigenvalues and eigenvectors
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-53

Six

Six

i

i





 if ,0

 if ,1

Characteristic Vector x

Then:

S
V-S

Edges 

across cut
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-54

1

2 3

4

5

6 7

8

9

cut

x=[1,1,1,1,0,0,0,0,0]T

S V-S

xTLx=2
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-55

Ratio cut

Sparsest ratio cut

NP-hard

Relax the constraint:

Normalize:
?



CMU SCS

Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-56

Sparsest ratio cut

NP-hard

Relax the constraint:

Normalize:
λ2

because of the Courant-Fisher theorem (applied to L)
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-57

Each ball 1 unit of mass xLx l

x1 xnOSCILLATE

Dfn of eigenvector

Matrix viewpoint:
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-58

Each ball 1 unit of mass xLx l

x1 xnOSCILLATE

Force due to neighbors displacement

Square of frequency
Physics viewpoint:
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-59

Each ball 1 unit of mass

Eigenvector 

value

Node id

xLx l

x1 xnOSCILLATE

For the first eigenvector:

All nodes: same displacement (= value)
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-60

Each ball 1 unit of mass

Eigenvector 

value

Node id

xLx l

x1 xnOSCILLATE
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Why λ2?

KDD'09 Faloutsos, Miller, Tsourakakis P7-61

Fundamental mode of vibration:

“along” the separator
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Cheeger Inequality

KDD'09 Faloutsos, Miller, Tsourakakis P7-62

Score of best cut

(hard to compute)

Max degree 2nd smallest eigenvalue

(easy to compute)
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Cheeger Inequality and graph 

partitioning heuristic:

KDD'09 Faloutsos, Miller, Tsourakakis P7-63

• Step 1: Sort vertices in non-decreasing 

order according to their score of the 

second eigenvector

• Step 2: Decide where to cut. 

• Bisection

• Best ratio cut
Two common heuristics
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Example: Spectral Partitioning

KDD'09 Faloutsos, Miller, Tsourakakis P7-65

• K500 • K500

dumbbell 

graph

A = zeros(1000); 

A(1:500,1:500)=ones(500)-eye(500); 

A(501:1000,501:1000)= ones(500)-eye(500); 

myrandperm = randperm(1000);

B = A(myrandperm,myrandperm);

In social network analysis, 

such clusters are called communities
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Example: Spectral Partitioning

• This is how adjacency matrix of B looks

KDD'09 Faloutsos, Miller, Tsourakakis P7-66

spy(B)
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Example: Spectral Partitioning

• This is how the 2nd eigenvector of B looks 

like.

KDD'09 Faloutsos, Miller, Tsourakakis P7-67

L = diag(sum(B))-B;

[u v] = eigs(L,2,'SM');

plot(u(:,1),‟x‟)

Not so much 

information yet…
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Example: Spectral Partitioning

• This is how the 2nd eigenvector looks if we 

sort it.

KDD'09 Faloutsos, Miller, Tsourakakis P7-68

[ign ind] = sort(u(:,1));

plot(u(ind),'x')

But now we see

the two communities!
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Example: Spectral Partitioning

• This is how adjacency matrix of B looks 

now

KDD'09 Faloutsos, Miller, Tsourakakis P7-69

spy(B(ind,ind))

Cut here!Community 1

Community 2Observation: Both heuristics 

are equivalent for the dumbbell
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Why Normalized Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-71

• K500 • K500

The only

weighted

edge!

Cut here

φ=φ=
Cut here

>

So, φ is not good here…
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Why Normalized Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-72

• K500 • K500

The only

weighted

edge!

Cut here

φ=φ=
Cut here

>Optimize Cheeger

constant h(G),

balanced cuts

where
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Extensions

• Normalized Laplacian

– Ng, Jordan, Weiss Spectral Clustering 

– Laplacian Eigenmaps for Manifold Learning

– Computer Vision and many more 

applications…

KDD'09 Faloutsos, Miller, Tsourakakis P7-73

Standard reference: Spectral Graph Theory

Monograph by Fan Chung Graham
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Conclusions

Spectrum tells us a lot about the graph:

• Adjacency: #Paths

• Laplacian:  Sparse Cut

• Normalized Laplacian: Normalized cuts, 

tend to avoid unbalanced cuts

KDD'09 Faloutsos, Miller, Tsourakakis P7-74
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