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Outline

• Introduction – Motivation

• Task 1: Node importance 

• Task 2: Community detection

• Task 3: Recommendations

• Task 4: Connection sub-graphs

• Task 5: Mining graphs over time

• Task 6: Virus/influence propagation

• Task 7: Spectral graph theory

• Task 8: Tera/peta graph mining: hadoop

• Observations – patterns of real graphs

• Conclusions



KDD'09 Faloutsos, Miller, Tsourakakis P6-3

CMU SCS

Detailed outline

• Epidemic threshold

– Problem definition

– Analysis

– Experiments

• Fraud detection in e-bay
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Virus propagation

• How do viruses/rumors  propagate?

• Blog influence?

• Will a flu-like virus linger, or will it 

become extinct soon?
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The model: SIS

• ‘Flu’ like: Susceptible-Infected-Susceptible

• Virus ‘strength’ s= β/δ

Infected

Healthy

NN1

N3

N2

Prob. ββββ

Prob. β

Prob. δδδδ
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Epidemic threshold ττττ

of a graph: the value of τ, such that

if   strength s = β / δ <  τ

an epidemic can not happen

Thus, 

• given a graph

• compute its epidemic threshold
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Epidemic threshold ττττ

What should τ depend on?

• avg. degree? and/or highest degree? 

• and/or variance of degree?

• and/or third moment of degree?

• and/or diameter?
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Epidemic threshold

• [Theorem 1] We have no epidemic, if 

β/δ <τ = 1/ λ1,A
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Epidemic threshold

• [Theorem 1] We have no epidemic (*), if 

β/δ <τ = 1/ λ1,A

largest eigenvalue

of adj. matrix A
attack prob.

recovery prob.
epidemic threshold

Proof: [Wang+03]
(*) under mild, conditional-independence assumptions
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Beginning of proof

Healthy @ t+1:

- ( healthy or healed ) 

- and not attacked @ t

Let: p(i , t) = Prob node i is sick @ t+1

1 - p(i, t+1 ) = (1 – p(i, t) + p(i, t) * δ ) *

Πj (1 – β aji * p(j , t) )

Below threshold, if the above non-linear dynamical system
above is ‘stable’ (eigenvalue of Hessian < 1 )
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Epidemic threshold for various 

networks

Formula includes older results as special cases: 

• Homogeneous networks [Kephart+White]

– λ1,A 
= <k>; τ = 1/<k> (<k> : avg degree)

• Star networks (d = degree of center)

– λ1,A 
= sqrt(d); τ = 1/ sqrt(d)

• Infinite power-law networks

– λ1,A 
= ∞; τ = 0 ; [Barabasi]
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Epidemic threshold

• [Theorem 2] Below the epidemic threshold, 

the epidemic dies out exponentially
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Detailed outline

• Epidemic threshold

– Problem definition

– Analysis

– Experiments

• Fraud detection in e-bay
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Current prediction vs. previous

The formula’s predictions are more accurate

Oregon Star
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Experiments (Oregon)
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SIS simulation - # infected nodes vs

time

Time (linear scale)

#inf.
(log scale)

above

at

below

Log - Lin
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SIS simulation - # infected nodes vs

time

Log - Lin

Time (linear scale)

#inf.
(log scale)

above
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below

Exponential
decay
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SIS simulation - # infected nodes vs

time

Log - Log

Time (log scale)

#inf.
(log scale)

above

at

below



KDD'09 Faloutsos, Miller, Tsourakakis P6-19

CMU SCS

SIS simulation - # infected nodes vs

time

Time (log scale)

#inf.
(log scale)

above
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below

Log - Log

Power-law
Decay (!)
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Detailed outline

• Epidemic threshold

• Fraud detection in e-bay
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E-bay Fraud detection

w/ Polo Chau &

Shashank Pandit, CMU

NetProbe: A Fast and Scalable System for Fraud Detection in 
Online Auction Networks, S. Pandit, D. H. Chau, S. Wang, and C. 

Faloutsos (WWW'07), pp. 201-210 
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E-bay Fraud detection

• lines: positive feedbacks

• would you buy from  him/her?
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E-bay Fraud detection

• lines: positive feedbacks

• would you buy from  him/her?

• or him/her?
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E-bay Fraud detection - NetProbe

Belief Propagation gives:
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Conclusions

• λ1,A   
: Eigenvalue of adjacency matrix 

determines the survival of a flu-like virus

– It gives a measure of how well connected is the 

graph (~ # paths – see Task 7, later)

– May guide immunization policies

• [Belief Propagation: a powerful algo]
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