Generating Functions

September 21, 2017

Useful Identities

For |x| < 1, the following identities hold:

1. (Taylor series) $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$

 $need\ f\ to\ be\ analytic\ at\ 0$

- 2. $\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} {k+(n-1) \choose n-1} x^k$ and $\prod_{k=0}^{\infty} (1+x^{2^k}) = \frac{1}{1-x}$ need |x| < 1
- 3. $\sum_{i \in A, j \in B} (\alpha_i x^i)(\beta_j x^j) = \left(\sum_{i \in A} \alpha_i x^i\right) \left(\sum_{j \in B} \beta_j x^j\right)$ need absolute convergence

Warmup

1. How to multiply: Expand $(1+x^2+x^7+x^{20})(x+x^3+x^4)$. Expand $(1+3x^2+x^7+4x^{20})(x-x^3+x^4)$.

Things you can do to a GF

- 1. $(a_0, a_1, a_2, \dots), (b_0, b_1, b_2, \dots) \mapsto (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots)$: $G_1, G_2 \mapsto G_1 + G_2$
- 2. $(a_0, a_1, a_2, \dots) \mapsto (\alpha a_0, \alpha a_1, \alpha a_2, \dots) : G \mapsto \alpha G$
- 3. $(a_0, a_1, a_2, \dots) \mapsto (0, a_0, a_1, \dots) : G(x) \mapsto xG(x)$
- 4. $(a_0, a_1, a_2, \dots) \mapsto (a_1, a_2, a_3, \dots) : G(x) \mapsto \frac{G(x) a_0}{x}$
- 5. $(a_0, a_1, a_2, \dots) \mapsto (a_0, a_0 + a_1, a_0 + a_1 + a_2, \dots)$: $G(x) \mapsto \frac{G(x)}{1-x}$
- 6. $(a_0, a_1, a_2, \dots) \mapsto (a_1, 2a_2, 3a_3, \dots) \colon G \mapsto G'$
- 7. $(a_0, a_1, a_2, \dots) \mapsto (C, a_0, \frac{a_1}{1}, \frac{a_2}{2}, \dots)$
- 8. Prove that the GF of H_n is $\frac{-\log(1-x)}{1-x}$.

Recurrences

- 1. Solve the recurrence $a_0 = 1$, $a_1 = 2$, $a_n = 3a_{n-1} 2a_{n-2}$.
- 2. Find the value of $1^2 + 2^2 + \cdots + n^2$.
- 3. The Catalan numbers are defined by $C_0 = 1$ and

$$C_n = C_{n-1}C_0 + C_{n-2}C_1 + \dots + C_0C_{n-1}$$

for $n \geq 1$. Find the generating function for C_n , and use it to find an explicit formula for C_n .

Summing

- 1. Find the value of $\sum_{n=0}^{\infty} \frac{n}{2^n}$. What about $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$?
- 2. Given $f(x) = a_0 + a_1 x + a_2 x^2 + \dots$, find $a_0 + a_4 x^4 + a_8 x^8 + \dots$
- 3. Find the value of $\sum_{n=0}^{\infty} \frac{1}{2^{2^n} 2^{-2^n}}.$

Counting

- 1. How many solutions are there to $x_1 + x_2 + \cdots + x_m = n$ such that $0 \le x_1, x_2, \dots, x_m \le n$? Such that $0 \le x_1 \le x_2 \le \cdots \le x_m \le n$?
- 2. Determine the number of k-element subsets of [n] such that the ith largest element of the subset is congruent to $i \mod 2$.

Two fairly hard problems

1. Let $(a_n)_{n\in\mathbb{N}}$ be the sequence defined by

$$a_0 = 1$$
, $a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} \frac{a_k}{n-k+1}$

Find the limit

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{a_k}{2^k}$$

2. Evaluate

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sum_{n=0}^{\infty} \frac{1}{k2^n+1}$$

Problems

- 1. Prove that $\sum_{k=0}^{n} \binom{n}{k} = 2^n$.
- 2. Find the value of $\sum_{k=0}^{n} {n \choose k} (-1)^k$. Deduce that the number of subsets of $\{1, 2, \dots, n\}$ with odd size is equal to the number with even size.
- 3. By comparing the coefficient of x^n in $(x+1)^{a+b}$ and $(x+1)^a(x+1)^b$, prove that

$$\binom{a+b}{n} = \sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k}$$

4. Let $\{1, 1, 2, 3, 5, 8, \ldots\}$ be the Fibonacci sequence. Prove that the number

$$\frac{1}{10^3} + \frac{1}{10^6} + \frac{2}{10^9} + \frac{3}{10^{12}} + \dots = 0.001001002003\dots$$

is a rational number. What is it in reduced form?

- 5. Find an explicit formula for the nth Fibonacci number. Hint: this formula will likely involve the number $\frac{1+\sqrt{5}}{2}$, a root of x^2-x-1 .
- 6. How many *n*-digit numbers, whose digits are in the set $\{2, 3, 7, 9\}$ are divisible by 3?