1. For this problem $x, y \geq 0$ always. We’ll prove the following claim: if $x^2 - 2y^2 = 1$ then $x + \sqrt{2}y = (3 + 2\sqrt{2})^k$ for some $k \geq 0$. (Last HW we showed the converse.)

(a) Show that $(x, y) = (1, 0)$ and $(3, 2)$ are the only solutions with $x \leq 3$.

If $x = 0$ then we need $y^2 = -1/2$ which has no solution. If $x = 1$ then we need $y = 0$. If $x = 2$ then we need $y^2 = 3/2$ which has no solution. If $x = 3$ then we need $y^2 = 4$ which has only $y = 2$ as a solution. (We require $y \geq 0$ in this problem.)

(b) Now suppose (x, y) is a solution with $x > 3$. Let u, v be such that $x + \sqrt{2}y = (3 + 2\sqrt{2})(u + \sqrt{2}v)$. We’ll show that (u, v) is also a solution with $u, v > 0$ and $u < x$. Why is this enough to prove the claim?

By part (a), the statement of the problem is true if $x \leq 3$. Suppose now that the statement is true for all solutions (x, y) with $x \leq n$ for some $n \geq 3$. We want to show that it is true for a solution with $x = n+1 > 3$. Given part (b), $x + \sqrt{2}y = (3 + 2\sqrt{2})(u + \sqrt{2}v)$ where (u, v) is a solution and $u < x, u, v > 0$. By induction, $u + \sqrt{2}v = (3 + 2\sqrt{2})^k$ for some $k \geq 0$ and so $x + \sqrt{2}y$ is of the desired form.

(c) Use the fact that (x, y) is a solution to show that $x > \sqrt{2}y$.

We have $x = 1 + 2y^2 > 2y^2 > \sqrt{2}y$.

(d) Use the fact that (x, y) is a solution and $x > 3$ to show that $y > (2/3)x$.

We have $2y^2 = x^2 - 1 > (8/9)x^2$ since $x > 3$ and thus $y > (2/3)x$.

(e) Solve for u, v in terms of x, y. Show that u, v are integer.

Multiplying both sides of $x + \sqrt{2}y = (3 + 2\sqrt{2})(u + \sqrt{2}v)$ by $3 - 2\sqrt{2}$ gives $u + \sqrt{2}v = (3 - 2\sqrt{2})(x + \sqrt{2}y) = (3x - 4y) + (-2x + 3y)\sqrt{2}$. By an earlier HW this implies $u = 3x - 4y, v = -2x + 3y$. Since x, y are integer so are u, v.

(f) Show that $u^2 - 2v^2 = 1$.

Plugging in the formulas from (e) and simplifying shows that $u^2 - 2v^2 = x^2 - 2y^2 = 1$. (Remember that if we define $N(z_1 + \sqrt{2}z_2) :=$
2. Let $T_n := n(n+1)/2$ for $n \geq 0$. T_n is called a triangular number because if $n \geq 1$ you can imagine arranging $T_n = n + (n-1) + (n-2) + \cdots + 2 + 1$ points into a triangle with n points on layer 1, $n-1$ points on layer 2, etc. Sometimes you can arrange T_n points into a square grid, e.g. $T_0 = 0, T_1 = 1, T_8 = 36 = 6^2$, and $T_{48} = 1225 = 35^2$. We’ll show that T_n is a square for infinitely many $n \geq 0$ and determine which n.

(a) Show that $T_n = m^2$ if and only if $(2n + 1)^2 - 2(2m)^2 = 1$.

This is just algebra, $n(n+1)/2 = m^2 \iff (2n + 1)^2 - 2(2m)^2 = 1$.

(b) Show that if $x^2 - 2y^2 = 1$ then x is odd and y is even.

If $x^2 - 2y^2 = 1$ then $x^2 \equiv 1 \pmod{2}$ and so x is odd. Thus $x^2 \equiv 1 \pmod{4}$ and so $2y^2 \equiv x^2 - 1 \equiv 0 \pmod{4}$. Thus $y^2 \equiv 0 \pmod{2}$ and so y is even.

(c) Show that $T_n = m^2$ with $n,m \geq 0$ if and only if $n = (x - 1)/2$ and $m = y/2$ where $x^2 - 2y^2 = 1$ and $x,y \geq 0$.

Clear from parts (a) and (b).

(d) Let $n_0 = 0, m_0 = 0$. For $k \geq 0$, let $n_{k+1} = 3n_k + 4m_k + 1, m_{k+1} = 2n_k + 3m_k + 1$ for $k \geq 0$. Show that $T_n = m^2$ with $n,m \geq 0$ iff $(n,m) = (n_k, m_k)$ for some $k \geq 0$. (Hint: Let $x_k, y_k, k \geq 0$ be such that $x_k + \sqrt{2}y_k = (3 + 2\sqrt{2})^k$. (Note $x_0 = 1, y_0 = 0$.) Recall the formulas you had for x_{k+1}, y_{k+1} in terms of x_k, y_k.)

We know from problem 1, that (x,y) is a solution to $x^2 - 2y^2 = 1$ if $x + \sqrt{2}y = (x_k + \sqrt{2}y_k) = (3 + 2\sqrt{2})^k$ for some $k \geq 0$. Thus by part (c), the solutions to $T_n = m^2$ are $(n,m) = (n_k, m_k)$ where $n_k = (x_k - 1)/2$ and $m_k = y_k/2$ for $k \geq 0$. Since $x_0 = 1, y_0 = 0$, we have $n_0 = 0, m_0 = 0$. By an earlier HW we have $x_{k+1} = 3x_k + 4y_k, y_{k+1} = 2x_k + 3y_k$ for $k \geq 0$. Plugging our
formulas relating n_k, m_k and x_k, y_k into these equations we get

$$(2n_{k+1} + 1) = 3(2n_k + 1) + 2(2m_k) \quad \text{(or } n_{k+1} = 3n_k + 2m_k + 1)$$

and

$$2m_{k+1} = 2(2n_k + 1) + 3(2m_k) \quad \text{(or } m_{k+1} = 2n_k + 3m_k + 1).$$

Both equations $n_{k+1} = 3n_k + 2m_k + 1, m_{k+1} = 2n_k + 3m_k + 1$ hold for $k \geq 0$.

3. Early on in class we proved Fermat’s theorem that if p is a prime, $p \equiv 1 \pmod{p}$ then p can be represented as a sum of two squares. Prove it again using Minkowski’s theorem. (In class we used Minkowski’s theorem to prove Lagrange’s theorem that every prime is representable as a sum of four squares.)

(a) Let p be a prime with $p \equiv 1 \pmod{4}$. Recall that this means we can find a, such that $a^2 \equiv -1 \pmod{p}$. Let $A = AZ^2$, where

$$A = \begin{pmatrix} p & a \\ 0 & 1 \end{pmatrix}.$$

In other words, $\Lambda = \{(u, (p, 0)) + v \cdot (a, 1) : u, v \in \mathbb{Z}\}$.

Show that if $(x, y) \in \Lambda$ then $x^2 + y^2 \equiv 0 \pmod{p}$.

This is just a straightforward verification. $(x, y) \in \Lambda$ iff $x = pu + av$ and $y = v$ for some integer u, v and thus $x^2 + y^2 \equiv (a^2 + 1)v \equiv 0 \pmod{p}$.

(b) Use Minkowski’s theorem that we stated in class (6.21 from the book) to show that there is $(x, y) \in \Lambda$, $(x, y) \neq (0, 0)$ such that $x^2 + y^2 < 2p$. (Which convex body C would you use?)

Let $C := \{(z, w) : z^2 + w^2 < 2p, z, w \in \mathbb{R}\}$ be the disc of radius $\sqrt{2p}$ centered at the origin in \mathbb{R}^2. Clearly C is convex and centrally symmetric. Also the area of C, $|C| = \pi(\sqrt{2p})^2 = 2\pi p > 4|\det(A)| = 4p$ so C must contain a point $(x, y) \in \Lambda$ with $(x, y) \neq (0, 0)$ by Minkowski’s theorem.

(c) Show that this proves Fermat’s theorem.

Since the point $(x, y) \in \Lambda$ we found in part (b) satisfies $0 < x^2 + y^2 < 2p$ and also $x^2 + y^2 \equiv 0 \pmod{p}$ by part (a), we have $x^2 + y^2 = p$.

4. (a) Show that $f = x^2 + xy + 5y^2$ is the only reduced positive definite binary quadratic form of discriminant -19.

We know that if $g = ax^2 + bxy + cy^2$ is a reduced positive definite binary quadratic form of discriminant $d = b^2 - 4ac = -19$
then $0 < a \leq \sqrt{-d/3} \leq 2.52$ (by Theorem 3.19 of the book) and that $-a < b \leq a$, so we need only check the cases $(a, b) = (2, 2), (2, 1), (2, 0), (2, -1), (1, 1), \text{ and } (1, 0)$. Solving $b^2 - 4ac = -19$ for c in each of these cases gives us an integer value of $c = (b^2 + 19)/4a$ only in the case $(a, b) = (1, 1)$. In this case $c = 5$.

(b) Why does this show that $H(-19) = 1$?

$H(-19)$ is the number of inequivalent positive definite binary quadratic forms of discriminant -19. Since every form is equivalent to a reduced form, and there is only one possible reduced form by part (a), there is only one class.

(c) Which odd primes are represented by f?

By Corollary 3.14 and the fact that $H(-19) = 1$ we know that an odd prime p is represented by f iff $p | d$ or $(\frac{d}{p}) = 1$. The last equality holds by quadratic reciprocity. For example if $p = 4k + 3$, $(\frac{1}{p}) = -1$ and $(\frac{19}{p}) = -(\frac{p}{19})$. The case $p = 4k + 1$ is analogous. Only the numbers $1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2 \text{ or } 1, 4, 9, 16, 6, 17, 11, 7, 5 \mod 19$ are quadratic residues. Thus p is represented by f iff $p = 19$ or $p \equiv 1, 4, 5, 6, 7, 9, 11, 16, 17 \mod 19$.

(d) Show that you can solve $x^2 \equiv -19 \pmod{4}$ but not $x^2 \equiv -19 \pmod{2^a}$ for $a \geq 3$.

$x^2 \equiv -19 \pmod{4}$ or $x^2 \equiv 1 \pmod{4}$ has solutions $x \equiv 1, 3 \pmod{4}$. However, since $x^2 \equiv 0, 1, \text{ or } 4 \pmod{8}$ we can’t solve $x^2 \equiv -19 \equiv 5 \pmod{8}$. Thus $x^2 \equiv -19 \pmod{2^a}$ is not solvable for $a \geq 3$.

(e) Which numbers are properly represented by f?

We know that $n = 0$ cannot be properly represented. By Theorem 3.13 of the book, and the fact that $H(-19) = 1$ we have that n is represented properly by f iff $n > 0$ (since f is positive definite) and $x^2 \equiv -19 \pmod{4n}$. Suppose the prime factorization of n is $n = 2^a \prod p_i^{a_i}$ where the product extends over odd primes p_i. By the Chinese Remainder Theorem, $x^2 \equiv -19 \pmod{4n}$ is solvable iff $x^2 \equiv -19 \pmod{4 \cdot 2^a}$ and $x^2 \equiv -19 \pmod{p_i^{a_i}}$ are all solvable. By part (d), $x^2 \equiv -19 \pmod{4 \cdot 2^a}$ is solvable iff $a = 0$. Now
we have to determine if \(x^2 \equiv -19 \pmod{p^a} \) is solvable where \(p \) is an odd prime and and \(a \geq 1 \).

First suppose \(p \neq 19 \). Let \(f(x) = x^2 + 19 \). If \(f(x) \) has a root \(r \) mod \(p \), then \(r \not\equiv 0 \pmod{p} \). This means \(r \) is non-singular (\(f'(r) = 2r \not\equiv 0 \pmod{p} \)) and so \(r \) lifts to a root mod \(p^a \) for every \(a \geq 1 \). So in this case, \(x^2 \equiv -19 \pmod{p} \) is solvable iff \(x^2 \equiv -19 \pmod{p^a} \) is solvable.

Now suppose \(p = 19 \). Clearly \(f(x) \) has only the roots \(r = 0 \) mod 19. \(r = 0 \) is a singular root though \(f'(r) = 0 \). We have \(f(0) = 19 \not\equiv 19^2 \), so \(f(x) \) has no roots mod 192 and hence no roots for 19a for \(a \geq 2 \).

Thus \(n \) is properly represented iff \(n \) is of the form \(n = 19^a \prod p_i^{e_i} \)

where \(a = 0, 1 \) and where the \(p_i \) are odd primes of the form \(p_i \equiv 1, 4, 5, 6, 7, 9, 11, 16, 17 \pmod{19} \).

(f) Which numbers are represented by \(f \)?

We know that a number \(N \) is represented iff \(N = nb^2 \) where \(n \) is properly represented. Thus by part (e) the only numbers represented are \(N = 0 \) and \(N = 2^{2a} \prod p_i^{a_i} \prod q_i^{2b_i} \) where the \(p_i \) are primes of the form \(p_i \equiv 0, 1, 4, 5, 6, 7, 9, 11, 16, 17 \pmod{19} \) and the \(q_i \) are primes of the form \(p_i \equiv 2, 3, 8, 10, 12, 13, 14, 15, 18 \pmod{19} \). Note 19 can occur to any power in \(N \). because it can appear to the power \(a = 0 \) or \(a = 1 \) in \(n \) by part (e), and hence to the power \(2k + 0 \) or \(2k + 1 \) in \(N = nb^2 \).