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Abstract

We study time-consistency questions for processes of monetary risk measures that
depend on bounded discrete-time processes describing the evolution of financial val-
ues. The time horizon can be finite or infinite. We call a process of monetary risk
measures time-consistent if it assigns to a process of financial values the same risk
irrespective of whether it is calculated directly or in two steps backwards in time, and
we show how this property manifests itself in the corresponding process of acceptance
sets. For processes of coherent and convex monetary risk measures admitting a robust
representation with sigma-additive linear functionals, we give necessary and sufficient
conditions for time-consistency in terms of the representing functionals.

Key words: Monetary risk measure processes, convex monetary risk measure pro-
cesses, coherent risk measure processes, acceptance set processes, time-consistency,
concatenation.

1 Introduction

The notion of coherent risk measure was introduced in Artzner et al. (1997, 1999) and
further developed in Delbaen (2001, 2002). In Föllmer and Schied (2002a, b, c) and Frittelli
and Rosazza Gianin (2002) the more general concepts of monetary and convex monetary
risk measures were introduced. All these works discuss one-period risk measurement, that
is, the risky objects are real-valued random variables describing future financial values
and the risk of such financial values is only measured at the beginning of the time-period
considered. Some typical examples of financial values in the context of risk measurement
are:

- the market value of a firm’s equity
∗Supported by Credit Suisse
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- the accounting value of a firm’s equity
- the market value of a portfolio of financial securities
- the surplus of an insurance company

Cvitanić and Karatzas study the dynamics of a risk associated with hedging a given
liability in a continuous-time setup. In Artzner et al. (2002) the evolution of financial
values over time is modelled with discrete-time stochastic processes and two special classes
of time-consistent processes of coherent risk measures related to m-stable sets of probability
measures are introduced. A treatment of the same two classes of time-consistent processes
of coherent risk measures in continuous time and more on m-stable sets can be found in
Delbaen (2004). Roorda et al. (2003) is similar to Artzner et al. (2002) but also discusses
the effects of hedging and the applicability of dynamic programming algorithms. Cheridito
et al. (2004a, b) contain representation results for coherent and convex monetary risk
measures that depend on processes of financial values evolving in continuous time. Rosazza
Gianin (2003) studies the relation between risk measures and g-expectations. Frittelli
and Rosazza Gianin (2004) contains a summary of earlier results on convex monetary
risk measures and connections to indifference pricing and g-expectations. Riedel (2004),
Detlefsen (2003), Scandolo (2003) and Weber (2003) study dynamic coherent or convex
monetary risk measures for cash-flow streams in discrete time.

In this paper we follow Artzner et al. and measure the risk of discrete-time processes
of financial values. We simply call them value processes. Of course, in discrete-time, value
processes can be turned into cash-flow streams by passing to increment processes. But this
transformation does not preserve the order of almost sure dominance, and because this
order plays a crucial role in our definition of monetary risk measures, it makes a difference
whether we take the risky objects to be value processes or cash-flow streams. Since in
most practical applications it can be assumed that money can be lent at a risk-free rate,
we find it more natural to order value processes than cash-flow streams by almost sure
dominance.

The structure of the paper is as follows. In Section 2 we introduce the basic setup
and some notation. In Section 3 we introduce monetary risk measures conditional on the
information available at stopping times, study the relation between such risk measures
and their acceptance sets and prove conditional representation results for coherent and
convex monetary risk measures. In Section 4 we define what we mean by time-consistency
for processes of monetary risk measures and show how the time-consistency property of
processes of monetary risk measures translates into a condition on processes of acceptance
sets. For processes of coherent and convex monetary risk measures that can be represented
with sigma-additive linear functionals we give necessary and sufficient conditions for time-
consistency in terms of the representing sigma-additive linear functionals. In order to do
this we define a concatenation operation for adapted increasing processes of integrable
variation. The concept of m-stability for probability measures can be viewed as a special
case of stability under concatenation. In Section 5 we discuss special cases and examples
of time-consistent processes of monetary risk measures for discrete-time value processes.
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2 The setup and notation

Throughout the paper (Ω,F , (Ft)t∈N, P ) is a filtered probability space with F0 = {∅,Ω}.
All equalities and inequalities between random variables or stochastic processes are under-
stood in the P -almost sure sense. For instance, if (Xt)t∈N and (Yt)t∈N are two stochastic
processes, we mean by X ≥ Y that for P -almost all ω ∈ Ω, Xt(ω) ≥ Yt(ω) for all
t ∈ N. Also, equalities and inclusions between sets in F are understood in the P -almost
sure sense. By R0 we denote the space of all adapted stochastic processes (Xt)t∈N on
(Ω,F , (Ft)t∈N, P ), where we identify two processes X and Y if X = Y . The two subspaces
R∞ and A1 of R0 are given by

R∞ :=
{
X ∈ R0 | ||X||R∞ < ∞}

,

where

||X||R∞ := inf
{

m ∈ R | sup
t∈N

|Xt| ≤ m

}

and
A1 :=

{
a ∈ R0 | ||a||A1 < ∞}

,

where

a−1 := 0 , ∆at := at − at−1 , for t ∈ N , and ||a||A1 := E

[∑

t∈N
|∆at|

]
.

The set A1
+ is given by

A1
+ :=

{
a ∈ A1 | ∆at ≥ 0 for all t ∈ N}

,

and the bilinear form 〈., .〉 on R∞ ×A1 by

〈X, a〉 := E

[∑

t∈N
Xt∆at

]
.

σ(R∞,A1) denotes the coarsest topology on R∞ such that for all a ∈ A1, X 7→ 〈X, a〉 is
a continuous linear functional on R∞. σ(A1,R∞) denotes the coarsest topology on A1

such that for all X ∈ R∞, a 7→ 〈X, a〉 is a continuous linear functional on A1.
For two (Ft)-stopping times τ and θ such that 0 ≤ τ < ∞ and τ ≤ θ ≤ ∞, we define

the projection πτ,θ : R0 →R0 by

πτ,θ(X)t := 1{τ≤t}Xt∧θ , t ∈ N .

For all X ∈ R∞ and a ∈ A1, we define

||X||τ,θ := ess inf
{

f ∈ L∞(Fτ ) | sup
t∈N

|πτ,θ(X)t| ≤ f

}
,
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where ess inf denotes the essential infimum of a family of random variables (see for instance,
Proposition VI.1.1 of Neveu, 1972), and

〈X, a〉τ,θ := E


 ∑

t∈[τ,θ]∩N
Xt∆at | Fτ


 .

The risky objects considered in this paper are elements of vector spaces of the form

R∞τ,θ := πτ,θR∞ .

A process X ∈ R∞τ,θ is meant to describe the evolution of a financial value on the time
interval [τ, θ] ∩ N. We assume that there exists a cash account where money can be lent
to and borrowed from at the same risk-free rate and use it as numéraire, that is, all prices
are expressed in multiples of one dollar put into the cash account at time 0. A monetary
risk measure on R∞τ,θ is a mapping

ρ : R∞τ,θ → L∞(Fτ ) ,

assigning to a value process X ∈ R∞τ,θ a real number that can depend on the information
available at the stopping time τ and specifies the minimal amount of money that has to be
held in the cash account to make X acceptable at time τ . By our choice of the numéraire,
the infusion of an amount of money m at time τ transforms a value process X ∈ R∞τ,θ into
X + m and reduces the risk of X to ρ(X)−m. We find it more convenient to work with
the negatives of monetary risk measures. If ρ is a monetary risk measure on R∞τ,θ, we call
φ = −ρ the monetary utility functional corresponding to ρ. φ(X) can then be viewed as
a risk adjusted value of a process X ∈ R∞τ,θ at time τ .

For the representation of conditional convex monetary and coherent risk measures we
will need the following subsets of A1:

A1
τ,θ := πτ,θA1 , (A1

τ,θ)+ := πτ,θA1
+ and Dτ,θ :=

{
a ∈ (A1

τ,θ)+ | 〈1, a〉τ,θ = 1
}

.

3 Conditional monetary utility functionals

In all of Section 3, τ and θ are two fixed (Ft)-stopping times such that 0 ≤ τ < ∞ and
τ ≤ θ ≤ ∞.

3.1 Basic definitions and easy properties

Definition 3.1 We call a mapping φ : R∞τ,θ → L∞(Fτ ) a monetary utility functional on
R∞τ,θ if it has the following three properties:

(0) φ(1AX) = 1Aφ(X) for all X ∈ R∞τ,θ and A ∈ Fτ

(1) φ(X) ≤ φ(Y ) for all X, Y ∈ R∞τ,θ such that X ≤ Y
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(2) φ(X + m1[τ,∞)) = φ(X) + m for all X ∈ R∞τ,θ and m ∈ L∞(Fτ )

We call a monetary utility functional φ on R∞τ,θ a concave monetary utility functional if
(3) φ(λX + (1− λ)Y ) ≥ λφ(X) + (1− λ)φ(Y ) for all X,Y ∈ R∞τ,θ and λ ∈ L∞(Fτ )

We call a concave monetary utility functional φ on R∞τ,θ a coherent utility functional if
(4) φ(λX) = λφ(X) for all X ∈ R∞τ,θ and λ ∈ L∞(Fτ ) such that λ ≥ 0.

For a monetary utility functional φ on R∞τ,θ and X ∈ R∞τ,θ, we define φ(X) := φ ◦πτ,θ(X).

A monetary risk measure on R∞τ,θ is a mapping ρ : R∞τ,θ → L∞(Fτ ) such that −ρ is
a monetary utility functional on R∞τ,θ. ρ is a convex monetary risk measure if −ρ is a
concave monetary utility functional and a coherent risk measure if −ρ is a coherent utility
functional.

Remarks 3.2
1. It follows from condition (0) of Definition 3.1 that φ(0) = 0 for every monetary
utility functional φ on R∞τ,θ. This normalization is convenient for the purposes of this
paper. Differently normalized monetary utility functionals on R∞τ,θ can be obtained by the
addition of an Fτ -measurable random variable.
2. It follows from (1) and (2) of Definition 3.1 that a monetary utility functional φ on
R∞τ,θ satisfies the following continuity condition:

(c) |φ(X)− φ(Y )| ≤ ||X − Y ||τ,θ, for all X, Y ∈ R∞τ,θ.

3. We call the property (3) of Definition 3.1 Fτ -concavity.
4. A mapping φ : R∞τ,θ → L∞(Fτ ) is a coherent utility functional on R∞τ,θ if and only if it
satisfies (1), (2) and (4) of Definition 3.1 and

(3’) φ(X + Y ) ≥ φ(X) + φ(Y ) for all X, Y ∈ R∞τ,θ.

Definition 3.3 The acceptance set Cφ of a monetary utility functional φ on R∞τ,θ is given
by

Cφ :=
{
X ∈ R∞τ,θ | φ(X) ≥ 0

}
.

Proposition 3.4 The acceptance set Cφ of a monetary utility functional φ on R∞τ,θ satis-
fies the following properties:

(i) ess inf
{
f ∈ L∞(Fτ ) | f1[τ,∞) ∈ Cφ

}
= 0.

(ii) 1AX + 1AcY ∈ Cφ for all X, Y ∈ Cφ and A ∈ Fτ .

(I) X ∈ Cφ, Y ∈ R∞τ,θ, X ≤ Y ⇒ Y ∈ Cφ

(C) (Xn)n∈N ⊂ Cφ, X ∈ R∞τ,θ, ||Xn −X||τ,θ
a.s.→ 0 ⇒ X ∈ Cφ.

If φ is a concave monetary utility functional, then

(II) λX + (1− λ)Y ∈ Cφ for all X, Y ∈ Cφ and λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1.

If φ is a coherent utility functional, then
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(II’) X + Y ∈ Cφ for all X, Y ∈ Cφ and

(III) λX for all X ∈ Cφ and λ ∈ L∞+ (Fτ ).

Proof. (i): It follows from the definition of Cφ and (0) and (2) of Definition 3.1 that

ess inf
{
f ∈ L∞(Fτ ) | f1[τ,∞) ∈ Cφ

}
= ess inf

{
f ∈ L∞(Fτ ) | φ(f1[τ,∞)) ≥ 0

}

= ess inf {f ∈ L∞(Fτ ) | φ(0) + f ≥ 0} = ess inf {f ∈ L∞(Fτ ) | f ≥ 0} = 0 .

(ii) follows directly from (0) of Definition 3.1.
(I) follows from (1) of Definition 3.1.
(C): Let (Xn)n∈N be a sequence in Cφ and X ∈ R∞τ,θ such that ||Xn − X||τ,θ

a.s.→ 0. It
follows from (c) that

φ(X) ≥ φ(Xn)− ||Xn −X||τ,θ ,

for all n ∈ N. Hence, φ(X) ≥ 0. The remaining statements of the proposition are
obvious. ¤

Remarks 3.5
1. We call a subset of R∞τ,θ that satisfies condition (II) of Proposition 3.4 Fτ -convex.
2. Let Cφ be the acceptance set of a monetary utility functional φ on R∞τ,θ. It can be
deduced from (0) of Definition 3.1 or, alternatively, from (ii) and (C) of Proposition 3.4
that

∑
n∈N 1AnXn ∈ Cφ for every sequence (Xn)n∈N in Cφ and each sequence (An)n∈N of

disjoint events in Fτ .

Definition 3.6 If C is a subset of R∞τ,θ, we define for all X ∈ R∞τ,θ,

φC(X) := ess sup
{
f ∈ L∞(Fτ ) | X − f1[τ,∞) ∈ C

}
,

with the convention
ess sup ∅ := −∞ .

Remark 3.7 Note that if C satisfies (ii) of Proposition 3.4 and, for a given X ∈ R∞τ,θ, the
set {

f ∈ L∞(Fτ ) | X − f1[τ,∞) ∈ C
}

is non-empty, then it is directed upwards, and hence, contains an increasing sequence
(fn)n∈N such that limn→∞ fn = φC(X) almost surely.

Proposition 3.8 Let φ be a monetary utility functional on R∞τ,θ. Then φCφ
= φ.

Proof. For all X ∈ R∞τ,θ,

φCφ
(X) = ess sup

{
f ∈ L∞(Fτ ) | X − f1[τ,∞) ∈ Cφ

}

= ess sup
{
f ∈ L∞(Fτ ) | φ(X − f1[τ,∞)) ≥ 0

}

= ess sup {f ∈ L∞(Fτ ) | φ(X) ≥ f} = φ(X) .

¤
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Proposition 3.9 If C is a subset of R∞τ,θ that satisfies (i), (ii) and (I) of Proposition 3.4,
then φC is a monetary utility functional on R∞τ,θ and CφC is the smallest subset of R∞τ,θ that
contains C and satisfies condition (C) of Proposition 3.4.
If C satisfies (i), (I) and (II) of Proposition 3.4, then φC is a concave monetary utility
functional on R∞τ,θ .
If C satisfies (i), (I), (II) and (III) or (i), (I), (II’) and (III) of Proposition 3.4, then φC is
a coherent utility functional on R∞τ,θ.

Proof. Let X,Y ∈ R∞τ,θ such that X = Y on A for some A ∈ Fτ . Assume that X−f1[τ,∞) ∈
C for some f ∈ L∞(Fτ ). If C satisfies (i) and (ii) of Proposition 3.4, there exists an
m ∈ L∞(Fτ ) such that m1[τ,∞) ∈ C, and

1A(Y − f1[τ,∞)) + 1Acm1[τ,∞) = 1A(X − f1[τ,∞)) + 1Acm1[τ,∞) ∈ C .

If C also satisfies (I) of Proposition 3.4, then

Y − 1Af1[τ,∞) + 1Ac(m + ||Y ||τ,θ)1[τ,∞) ∈ C .

Hence, 1AφC(Y ) ≥ 1AφC(X), and by symmetry, 1AφC(Y ) = 1AφC(X). It follows that
φC(1AX) = 1AφC(X) for all X ∈ R∞τ,θ and A ∈ Fτ . (1) of Definition 3.1 follows from (I)
of Proposition 3.4. (2) of Definition 3.1 follows directly from the construction of φC . By
Proposition 3.4, CφC satisfies condition (C) of Proposition 3.4, and it obviously contains
C. On the other hand, if X ∈ CφC , then there exists an increasing sequence (fn)n∈N in
L∞(Fτ ) such that X−fn1[τ,∞) ∈ C and fn a.s.→ φC(X) ≥ 0. Set gn := fn∧0. Then, by (I)
of Proposition 3.4, X− gn1[τ,∞) ∈ C, and gn → 0 almost surely. Hence, CφC is the smallest
subset of R∞τ,θ that satisfies condition (C) of Proposition 3.4 and contains C. The rest of
the statements are obvious. ¤

3.2 Representations for conditional concave monetary and coherent util-
ity functionals

Definition 3.10 We say a concave monetary utility functional φ on R∞τ,θ is continuous
for bounded decreasing sequences if

lim
n→∞φ(Xn) = φ(X) almost surely

for every decreasing sequence (Xn)n∈N in R∞τ,θ and X ∈ R∞τ,θ such that

Xn
t

a.s.→ Xt for all t ∈ N .

Lemma 3.11 Let φ be a concave monetary utility functional on R∞τ,θ that is continuous
for bounded decreasing sequences. Then the corresponding acceptance set Cφ is σ(R∞,A1)-
closed.
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Proof. Let (Xλ)λ∈Λ be a net in Cφ and X ∈ R∞τ,θ such that Xλ → X in σ(R∞,A1), and
assume that

φ(X) < 0 on A (3.1)

for some A ∈ Fτ with P [A] > 0. Then the map φ̃ : R∞ → R given by

φ̃(X) =
1

P [A]
E [1A φ ◦ πτ,θ(X)] , X ∈ R∞ ,

is a concave monetary utility functional on R∞ that is continuous for bounded decreasing
sequences. Denote by G the sigma-algebra on Ω × N generated by all the sets A × {t},
t ∈ N, A ∈ Ft, and by ν the measure on (Ω,G) given by

ν(A× {t}) = 2−(t+1)P [A] , t ∈ N , A ∈ Ft .

Then R∞ = L∞(Ω × N,G, ν) and A1 can be identified with L1(Ω × N,G, ν). Hence, it
can be deduced from the Krein–Šmulian theorem that Cφ̃ is a σ(R∞,A1)-closed subset of
R∞ (see the proof of Theorem 3.2 in Delbaen (2002) or Remark 4.3 in Cheridito et al.
(2004)). Since (Xλ)λ∈Λ ⊂ Cφ̃, it follows that

1
P [A]

E [1A φ(X)] ≥ 0 ,

which contradicts (3.1). ¤

Definition 3.12 For a concave monetary utility functional φ on R∞τ,θ and a ∈ A1
τ,θ, we

define
φ∗(a) := ess infX∈R∞τ,θ

{
〈X, a〉τ,θ − φ(X)

}

and
φ#(a) := ess infX∈Cφ

〈X, a〉τ,θ .

Remarks 3.13
Let φ be a concave monetary utility functional φ on R∞τ,θ.
1. Obviously, for all a ∈ A1

τ,θ, φ∗(a) and φ#(a) are measurable functions from (Ω,Fτ ) to
[−∞, 0] and

φ∗(a) ≤ φ#(a) for all a ∈ A1
τ,θ .

Moreover,
φ∗(a) = φ#(a) for all a ∈ Dτ,θ (3.2)

because

〈X, a〉τ,θ − φ(X) =
〈
X − φ(X)1[τ,∞), a

〉
τ,θ

, and X − φ(X)1[τ,∞) ∈ Cφ ,

for each X ∈ R∞τ,θ and a ∈ Dτ,θ.
2. It can easily be checked that

φ#(λa + (1− λ)b) ≥ λφ#(a) + (1− λ)φ#(b) ,
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for all a, b ∈ A1
τ,θ and λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1, and

φ#(λa) = λφ#(a) for all a ∈ A1
τ,θ and λ ∈ L∞+ (Fτ ) . (3.3)

Note that it follows from (3.3) that

φ#(1Aa + 1Acb) = 1Aφ#(a) + 1Acφ#(b)

for all a, b ∈ A1
τ,θ and A ∈ Fτ .

3. For every measurable function m : (Ω,Fτ ) → [−∞, 0], the set
{

a ∈ A1
τ,θ | φ#(a) ≥ m

}

is σ(A1,R∞)-closed. Indeed, let (aµ)µ∈M be a net in
{

a ∈ A1
τ,θ | φ#(a) ≥ m

}
and a ∈ A1

such that aµ → a in σ(A1,R∞). Then, for all X ∈ Cφ, µ ∈ M and A ∈ Fτ such that
A ⊂ {m > −∞},

〈1AX, aµ〉 = E
[
1A 〈X, aµ〉τ,θ

]
≥ E [1Am] .

Hence,
E

[
1A 〈X, a〉τ,θ

]
= 〈1AX, a〉 ≥ E [1Am] ,

which shows that
〈X, a〉τ,θ ≥ m, for all X ∈ Cφ ,

and therefore φ#(a) ≥ m.

Definition 3.14 A penalty function γ on Dτ,θ is a mapping from Dτ,θ to the space of
measurable functions f : (Ω,Fτ ) → [−∞, 0] with the following property:

ess supa∈Dτ,θ
γ(a) = 0 .

We call a penalty function γ on Dτ,θ special if

γ(1Aa + 1Acb) = 1Aγ(a) + 1Acγ(b) ,

for all a, b ∈ Dτ,θ and A ∈ Fτ .

Theorem 3.15 The following are equivalent:

(1) φ is a mapping defined on R∞τ,θ that can be represented as

φ(X) = ess infa∈Dτ,θ

{
〈X, a〉τ,θ − γ(a)

}
, X ∈ R∞τ,θ , (3.4)

for a penalty function γ on Dτ,θ.

(2) φ is a concave monetary utility functional onR∞τ,θ whose acceptance set Cφ is σ(R∞,A1)-
closed.
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(3) φ is a concave monetary utility functional on R∞τ,θ that is continuous for bounded
decreasing sequences.

Moreover, if (1)–(3) are satisfied, then φ# is a special penalty function on Dτ,θ, φ#(a) ≥
γ(a) for all a ∈ Dτ,θ, and the representation (3.4) also holds with φ# instead of γ.

Proof.
(1) ⇒ (3): If φ has a representation of the form (3.4), then it is obviously a concave
monetary utility functional on R∞τ,θ. To show that it is continuous for bounded decreasing
sequences, let (Xn)n∈N be a decreasing sequence in R∞τ,θ and X ∈ R∞τ,θ such that

lim
n→∞Xn

t = Xt almost surely, for all t ∈ N .

Note that this implies that

lim
n→∞ 〈X

n, a〉τ,θ = 〈X, a〉τ,θ almost surely, for all a ∈ Dτ,θ .

By property (1) of Definition 3.1, φτ,θ(Xn) is decreasing in n. Hence, almost surely,
limn→∞ φ(Xn) exists and limn→∞ φ(Xn) ≥ φ(X). On the other hand, there exists a
sequence (ak)k∈N in Dτ,θ such that

φ(X) = inf
k∈N

{〈
X, ak

〉
− γ(ak)

}
.

Since 〈
Xn, ak

〉
− γ(ak) ≥ φ(Xn)

for all k, n ∈ N, we have that
〈
X, ak

〉
− γ(ak) = lim

n→∞

{〈
Xn, ak

〉
− γ(ak)

}
≥ lim

n→∞φ(Xn)

for all k ∈ N, and therefore also,

φ(X) ≥ lim
n→∞φ(Xn) .

(3) ⇒ (2): follows from Lemma 3.11.
(2) ⇒ (1): By (3.2) and the definition of φ∗,

φ#(a) = φ∗(a) ≤ 〈X, a〉τ,θ − φ(X)

for all X ∈ R∞τ,θ and a ∈ Dτ,θ. Hence,

φ(X) ≤ ess infa∈Dτ,θ

{
〈X, a〉τ,θ − φ#(a)

}
for all X ∈ R∞τ,θ . (3.5)

To show the reverse inequality, let m ∈ L∞(Fτ ) with

m ≤ ess infa∈Dτ,θ

{
〈X, a〉τ,θ − φ#(a)

}
, (3.6)
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and assume that Y = X −m1[τ,∞) /∈ Cφ. Since Cφ is a convex, σ(R∞,A1)-closed subset
of R∞, there exists an a ∈ (A1

τ,θ)+ such that

E
[
〈Y, a〉τ,θ

]
= 〈Y, a〉0,∞ < inf

Z∈Cφ

〈Z, a〉0,∞ = E
[
ess infZ∈Cφ

〈Z, a〉τ,θ

]
.

Therefore, there exists a B ∈ Fτ with P [B] > 0 such that

〈Y, a〉τ,θ < ess infZ∈Cφ
〈Z, a〉τ,θ on B . (3.7)

Note that for A =
{
〈1, a〉τ,θ = 0

}
,

1A

∣∣∣〈Z, a〉τ,θ

∣∣∣ ≤ 1A 〈|Z| , a〉τ,θ ≤ 1A||Z||τ,θ 〈1, a〉τ,θ = 0 for all Z ∈ R∞τ,θ .

Hence, B ⊂
{
〈1, a〉τ,θ > 0

}
. Define the process b ∈ Dτ,θ as follows:

b := 1B
a

〈1, a〉τ,θ

+ 1Bc1[τ,∞) .

It follows from (3.7) that

〈X, b〉τ,θ −m = 〈Y, b〉τ,θ < ess infZ∈Cφ
〈Z, b〉τ,θ = φ#(b) on B .

This contradicts (3.6). Hence, X − m1[τ,∞) ∈ Cφ, and therefore, φ(X) ≥ m for all m
satisfying (3.6), which shows that

φ(X) ≥ ess infa∈Dτ,θ

{
〈X, a〉τ,θ − φ#(a)

}
.

This together with (3.5) proves that (2) implies (1) and also that φ# is a penalty function
on Dτ,θ. By Remark 3.13.2, φ# is special. If φ is a concave monetary utility functional on
R∞τ,θ with a representation of the form (3.4), then

〈X, a〉τ,θ − φ(X) ≥ γ(a)

for all X ∈ R∞τ,θ and a ∈ Dτ,θ, which implies that φ# = φ∗ ≥ γ on Dτ,θ. ¤

Corollary 3.16 The following are equivalent:

(1) φ is a mapping defined on R∞τ,θ that can be represented as

φ(X) = ess infa∈Q 〈X, a〉τ,θ , X ∈ R∞τ,θ , (3.8)

for a non-empty subset Q of Dτ,θ.

(2) φ is a coherent utility functional on R∞τ,θ whose acceptance set Cφ is σ(R∞,A1)-
closed.
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(3) φ is a coherent utility functional on R∞τ,θ that is continuous for bounded decreasing
sequences.

Moreover, if (1)–(3) are satisfied, then the set

Q0
φ :=

{
a ∈ Dτ,θ | φ#(a) = 0

}

is equal to the smallest σ(A1,R∞)-closed, Fτ -convex subset of Dτ,θ that contains Q, and
the representation (3.4) also holds with Q0

φ instead of Q.

Proof. If (1) holds, then it follows from Theorem 3.15 that φ is a concave monetary utility
functional on R∞τ,θ that is continuous for bounded decreasing sequences, and it is clear
that φ is coherent. This shows that (1) implies (3). The implication (3) ⇒ (2) follows
directly from Theorem 3.15. If (2) holds, then Theorem 3.15 implies that φ# is a special
penalty function on Dτ,θ, and

φ(X) = inf
a∈Dτ,θ

{
〈X, a〉τ,θ − φ#(a)

}
for all X ∈ R∞τ,θ .

Since φ# is special, the set
{
φ#(a) | a ∈ Dτ,θ

}
is directed upwards. Therefore, there exists

a sequence (ak)k∈N in Dτ,θ such that almost surely,

φ#(ak) ↗ ess supa∈Dτ,θ
φ#(a) = 0 , as k →∞ .

It can easily be deduced from the fact that φ is coherent, that
{

φ#(a) = 0
}
∪

{
φ#(a) = −∞

}
= Ω for all a ∈ Dτ,θ .

Hence, the sets Ak :=
{
φ#(ak) = 0

}
are increasing in k, and

⋃
k∈NAk = Ω. Therefore,

a∗ := 1A0a
0 +

∑

k≥1

1Ak\Ak−1
ak ∈ Dτ,θ ,

and it follows from Remark 3.13.2 that φ#(a∗) = 0. Note that for all a ∈ Dτ,θ,

1{φ#(a)=0}a + 1{φ#(a)=−∞}a∗ ∈ Q0
φ .

This shows that

φ(X) = ess infa∈Q0
φ
〈X, a〉τ,θ , for all X ∈ R∞τ,θ . (3.9)

It remains to show that Q0
φ is equal to the σ(A1,R∞)-closed, Fτ -convex hull 〈Q〉τ of Q.

It follows from Theorem 3.15 that φ# is the largest among all penalty functions on Dτ,θ

that induce φ. This implies Q ⊂ Q0
φ. By Remarks 3.13.2 and 3.13.3, Q0

φ is Fτ -convex and
σ(A1,R∞)-closed. Hence, 〈Q〉τ ⊂ Q0

φ. Now, assume that there exists a b ∈ Q0
φ \ 〈Q〉τ .
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Then, it follows from the separating hyperplane theorem that there exists an X ∈ R∞τ,θ

such that

〈X, b〉 < inf
a∈〈Q〉τ

〈X, a〉 = E
[
ess infa∈〈Q〉τ 〈X, a〉τ,θ

]
= E

[
ess infa∈Q 〈X, a〉τ,θ

]
= E [φ(X)] .

(3.10)
But, by (3.9),

〈X, b〉 − E [φ(X)] = E
[
〈X, b〉τ,θ − φ(X)

]
≥ 0

for all b ∈ Q0
φ, which contradicts (3.10). Hence, Q0

φ \ 〈Q〉τ is empty, that is, Q0
φ ⊂ 〈Q〉τ .¤

Remark 3.17 Detlefsen (2003) and Scandolo (2003) give representation results for con-
ditional concave monetary utility functionals that depend on random variables. Since
monetary utility functionals that depend on random variables can be seen as special cases
of monetary utility functionals for stochastic processes, Theorem 3.15 generalizes the rep-
resentation results in Detlefsen (2003) and Scandolo (2003).

3.3 Relevance

Definition 3.18 Let φ be a monetary utility functional on R∞τ,θ. We call φ θ-relevant if

A ⊂ {
φ(−ε1A1[t∧θ,∞)) < 0

}

for all ε > 0, t ∈ N and A ∈ Ft∧θ.

Definition 3.19

De
τ,θ :=



a ∈ Dτ,θ | P


 ∑

j≥t∧θ

∆aj > 0


 = 1 for all t ∈ N



 .

Remarks 3.20
1. If φ is a θ-relevant monetary utility functional on R∞τ,θ and ξ is an (Ft)-stopping time
such that τ ≤ ξ ≤ θ, then, obviously, the restriction of φ to R∞τ,ξ is ξ-relevant.
2. Assume that θ is finite. Then it can easily be checked that a monetary utility functional
φ on R∞τ,θ is θ-relevant if and only if

A ⊂ {
φ(−ε1A1[θ,∞)) < 0

}

for all ε > 0 and A ∈ Fθ. Also, in this case,

De
τ,θ = {a ∈ Dτ,θ | P [∆aθ > 0] = 1} .

Definition 3.21 For a concave monetary utility functional φ on R∞τ,θ and a constant
K ≥ 0, we define

QK
φ :=

{
a ∈ Dτ,θ | φ#(a) ≥ −K

}
.
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By the Remarks 3.13.2 and 3.13.3, QK
φ is Fτ -convex and σ(A1,R∞)-closed for every

concave monetary utility functional φ on R∞τ,θ and each constant K ≥ 0.

Proposition 3.22 Let φ be a concave monetary utility functional on R∞τ,θ that is contin-
uous for bounded decreasing sequences and θ-relevant. Then

QK
φ ∩ De

τ,θ 6= ∅ for all K > 0 .

Proof. Fix K > 0 and t ∈ N. For a ∈ Dτ,θ, we denote

et(a) :=
∑

j≥t∧θ

∆aj ,

and we define
αt := sup

a∈QK
φ

P [et(a) > 0] . (3.11)

Let (at,n)n∈N be a sequence in QK
φ with

lim
n→∞P

[
et(at,n) > 0

]
= αt .

Since QK
φ is convex and σ(A1,R∞)-closed,

at :=
∑

n≥1

2−nat,n ∈ QK
φ ,

and, obviously,
P

[
et(at) > 0

]
= αt .

In the next step we show that αt = 1. Assume to the contrary that αt < 1 and denote
At :=

{
et(at) = 0

}
. Since φ is θ-relevant,

At ⊂
{
φ(−K1At1[t∧θ,∞)) < 0

}
,

and therefore also,

Ât :=
⋂

B∈Fτ , At⊂B

B ⊂ {
φ(−K1At1[t∧θ,∞)) < 0

}
.

By Theorem 3.15,

φ(−K1At1[t∧θ,∞)) = ess infa∈Dτ,θ

{〈−K1At1[t∧θ,∞), a
〉
τ,θ
− φ#(a)

}
.

Hence, there must exist an a ∈ Dτ,θ with P [At ∩ {et(a) > 0}] > 0 and φ#(a) ≥ −K on
Ât. Then,

bt := 1Ât
a + 1Âc at ∈ QK

φ , ct :=
1
2
bt +

1
2
at ∈ QK

φ ,
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and P
[
et(ct) > 0

]
> P

[
et(at) > 0

]
= α. This contradicts (3.11). Therefore, we must have

αt = 1 for all t ∈ N. Finally, set
a∗ =

∑

t≥1

2−tat ,

and note that a∗ ∈ QK
φ ∩ De

τ,θ. ¤

Corollary 3.23 Let φ be a concave monetary utility functional on R∞τ,θ that is continuous
for bounded decreasing sequences and θ-relevant. Then

φ(X) = ess infa∈De
τ,θ

{
〈X, a〉τ,θ − φ#(a)

}
, for all X ∈ R∞τ,θ .

Proof. By Theorem 3.15,

φ(X) = ess infa∈Dτ,θ

{
〈X, a〉τ,θ − φ#(a)

}
, for all X ∈ R∞τ,θ ,

which immediately shows that

φ(X) ≤ ess infa∈De
τ,θ

{
〈X, a〉τ,θ − φ#(a)

}
, for all X ∈ R∞τ,θ .

To show the reverse inequality, we choose a b ∈ Dτ,θ. It follows from Proposition 3.22 that
there exists a process c ∈ Q1

φ ∩ De
τ,θ. Then, for all n ≥ 1,

bn := (1− 1
n

)b +
1
n

c ∈ De
τ,θ ,

lim
n→∞ 〈X, bn〉τ,θ = lim

n→∞

{
(1− 1

n
) 〈X, b〉τ,θ +

1
n
〈X, c〉τ,θ

}
= 〈X, b〉τ,θ almost surely,

and

φ#(bn) = ess infX∈Cφ
〈X, bn〉τ,θ ≥ (1− 1

n
)ess infX∈Cφ

〈X, b〉τ,θ +
1
n

ess infX∈Cφ
〈X, c〉τ,θ

= (1− 1
n

)φ#(b) +
1
n

φ#(c) → φ#(b) almost surely .

This shows that

〈X, b〉τ,θ − φ#(b) ≥ ess infa∈De
τ,θ

{
〈X, a〉τ,θ − φ#(a)

}
,

and therefore,
φ(X) ≥ ess infa∈De

τ,θ

{
〈X, a〉τ − φ#(a)

}
,

which completes the proof. ¤
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Corollary 3.24 Let φ be a coherent utility functional on R∞τ,θ that is continuous for
bounded decreasing sequences and θ-relevant. Then

φ(X) = ess infa∈Qe
φ
〈X, a〉τ,θ , X ∈ R∞τ,θ ,

where Qe
φ :=

{
a ∈ De

τ,θ | φ#(a) = 0
}
.

Proof. This corollary can either be deduced from Corollary 3.16 and Proposition 3.22 like
Corollary 3.23 from Theorem 3.15 and Proposition 3.22 or from Corollary 3.23 with the
arguments used in the proof of the implication (2) ⇒ (1) of Corollary 3.16. ¤

4 Processes of monetary utility functionals and acceptance
sets

Definition 4.1 Let S ∈ N and T ∈ N ∪ {∞} such that S ≤ T . Assume that for all t ∈
[S, T ]∩N, φt,T is a monetary utility functional on R∞t,T with acceptance set Ct,T . Then we
call (φt,T )t∈[S,T ]∩N a monetary utility functional process and (Ct,T )t∈[S,T ]∩N an acceptance
set process. We call (φt,T )t∈[S,T ]∩N a relevant monetary utility functional process if all
φt,T are T -relevant. We call (φt,T )t∈[S,T ]∩N a concave monetary utility process if φt,T is a
concave monetary utility functional on R∞t,T for all t ∈ [S, T ]∩N. If every φt,T is coherent,
we call (φt,T )t∈[S,T ]∩N a coherent utility functional process.

Definition 4.2 Let S ∈ N and T ∈ N∪{∞} such that S ≤ T . Let (φt,T )t∈[S,T ]∩N be a mon-
etary utility functional process with corresponding acceptance set process (Ct,T )t∈[S,T ]∩N.
Let τ and θ be two (Ft)-stopping times such that τ is finite (i.e. τ < ∞) and S ≤ τ ≤
θ ≤ T . Then we define the mapping φτ,θ : R∞τ,θ → L∞(Fτ ) by

φτ,θ(X) :=
∑

t∈[S,T ]∩N
φt,T (1{τ=t}X) , (4.12)

and the set Cτ,θ ⊂ R∞τ,θ by

Cτ,θ :=
{
X ∈ R∞τ,θ | 1{τ=t}X ∈ Ct,T for all t ∈ [S, T ] ∩ N}

. (4.13)

It can easily be checked that φτ,θ defined by (4.12) is a monetary utility functional on R∞τ,θ

and that the set Cτ,θ given in (4.13) is the acceptance set of φτ,θ. Moreover, if (φt,T )t∈[S,T ]∩N
is a concave monetary utility functional process, then φτ,θ is a concave monetary utility
functional on R∞τ,θ. If (φt,T )t∈[S,T ]∩N is coherent, then so is φτ,θ.

4.1 Time-consistency

Definition 4.3 Let S ∈ N and T ∈ N∪{∞} such that S ≤ T . We call a monetary utility
functional process (φt,T )t∈[S,T ]∩N time-consistent if

φt,T (X) = φt,T (X1[t,θ) + φθ,T (X)1[θ,∞))
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for each t ∈ [S, T ] ∩ N, every finite (Ft)-stopping time θ such that t ≤ θ ≤ T and all
processes X ∈ R∞t,T .

Remarks 4.4
1. Let S ∈ N and T ∈ N∪ {∞} such that S ≤ T . It is easy to see that a monetary utility
functional process (φt,T )t∈[S,T ]∩N is time-consistent, if and only if

φt,T (X) ≤ φt,T (Y ) ,

for each t ∈ [S, T ] ∩ N and all processes X, Y ∈ R∞t,T such that

X1[t,θ) ≤ Y 1[t,θ) and φθ,T (X) ≤ φθ,T (Y ) ,

for some finite (Ft)-stopping time θ with t ≤ θ ≤ T .
2. Let S ∈ N and T ∈ N ∪ {∞} such that S ≤ T and (φt,T )t∈[S,T ]∩N a time-consistent
monetary utility functional process. Then it can easily be seen from Definition 4.2 that

φτ,T (X) = φτ,T (X1[τ,θ) + φθ,T (X)1[θ,∞))

for every pair of finite (Ft)-stopping times τ and θ such that S ≤ τ ≤ θ ≤ T and all
processes X ∈ R∞τ,T .

Proposition 4.5 Let S, T ∈ N such that S ≤ T and (φt,T )T
t=S a monetary utility func-

tional process that satisfies

φt,T (X) = φt,T (X1{t} + φt+1,T (X)1[t+1,∞)) (4.14)

for all t = S, . . . , T − 1 and X ∈ R∞t,T . Then (φt,T )T
t=S is time-consistent.

Proof. For t ∈ [S, T ] ∩ N, an (Ft)-stopping time θ such that t ≤ θ ≤ T and a process
X ∈ R∞t,T , we denote Y = X1[t,θ) + φθ,T (X)1[θ,∞) and show

φt,T (X) = φt,T (Y ) (4.15)

by induction. For t = T , (4.15) is obvious. If t ≤ T − 1, we assume that

φt+1,T (Z) = φt+1,T (Z1[t+1,ξ) + φξ,T (Z)1[ξ,∞)) ,

for every (Ft)-stopping time ξ such that t + 1 ≤ ξ ≤ T and all Z ∈ R∞t+1,T . Then

1{θ≥t+1}φt+1(X) = φt+1(1{θ≥t+1}X) = φt+1(1{θ≥t+1}Y ) = 1{θ≥t+1}φt+1(Y ) .

Hence, it follows from the assumption (4.14) that

φt,T (Y ) = φt,T

(
1{θ=t}φt,T (X)1[t,∞) + 1{θ≥t+1}Y

)

= 1{θ=t}φt,T (X) + 1{θ≥t+1}φt,T (Y )
= 1{θ=t}φt,T (X) + 1{θ≥t+1}φt,T (Y 1{t} + φt+1(Y )1[t+1,∞))
= 1{θ=t}φt,T (X) + 1{θ≥t+1}φt,T (X1{t} + φt+1(X)1[t+1,∞))
= 1{θ=t}φt,T (X) + 1{θ≥t+1}φt,T (X)
= φt,T (X) .

¤
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Proposition 4.6 Let S ∈ N, T ∈ N ∪ {∞} and τ, θ finite (Ft)-stopping times such that
S ≤ τ ≤ θ ≤ T . For a monetary utility functional process (φt,T )t∈[S,T ]∩N with correspond-
ing acceptance set process (Ct,T )t∈[S,T ]∩N the following two conditions are equivalent:

(1) φτ,T (X) = φτ,T (X1[τ,θ) + φθ,T (X)1[θ,∞)) for all X ∈ R∞τ,T .

(2) Cτ,T = Cτ,θ + Cθ,T

Proof.
(1) ⇒ (2):

Assume Y ∈ Cτ,θ and Z ∈ Cθ,T . Then X = Y + Z ∈ R∞τ,T , X1[τ,θ) = Y 1[τ,θ) and
φθ,T (X) = Yθ + φθ,T (Z) ≥ Yθ. Therefore,

φτ,T (X) = φτ,T (X1[τ,θ) + φθ,T (X)1[θ,∞)) ≥ φτ,T (Y ) ≥ 0 .

This shows that Cτ,θ + Cθ,T ⊂ Cτ,T . To show Cτ,T ⊂ Cτ,θ + Cθ,T , let X ∈ Cτ,T and set
Z := (X − φθ,T (X))1[θ,∞) and Y := X − Z = X1[τ,θ) + φθ,T (X)1[θ,∞). It follows directly
from the translation invariance of φθ,T that Z ∈ Cθ,T . Moreover, φτ,T (Y ) = φτ,T (X) ≥ 0,
which shows that Y ∈ Cτ,θ.

(2) ⇒ (1):
Let X ∈ R∞τ,T and f ∈ L∞(Fτ ) such that X − f1[τ,∞) ∈ Cτ,T . Since

φθ,T (X) = ess sup
{
g ∈ L∞(Fθ) | (X − g)1[θ,∞) ∈ Cθ,T

}

and
Cτ,T ⊂ Cτ,θ + Cθ,T ,

the process

X − f1[τ,∞) − (X − φθ,T (X))1[θ,∞) = X1[τ,θ) + φθ,T (X)1[θ,∞) − f1[τ,∞)

has to be in Cτ,θ. This shows that

φτ,T (X1[τ,θ) + φθ,T (X)1[θ,∞)) ≥ φτ,T (X) .

On the other hand, if X ∈ R∞τ,T and f ∈ L∞(Fτ ) such that

X1[τ,θ) + φθ,T (X)1[θ,∞) − f1[τ,∞) ∈ Cτ,T ,

then also X − f1[τ,∞) ∈ Cτ,T because (X − φθ,T (X))1[θ,∞) ∈ Cθ,T and Cτ,θ + Cθ,T ⊂ Cτ,T .
It follows that

φτ,T (X) ≥ φτ,T (X1[τ,θ) + φθ,T (X)1[θ,∞)) .

¤
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Proposition 4.7 Let S ∈ N and T ∈ N ∪ {∞} such that S ≤ T . Let (φt,T )t∈[S,T ]∩N
be a time-consistent monetary utility functional process with corresponding acceptance set
process (Ct,T )t∈[S,T ]∩N, and let τ and θ be two finite (Ft)-stopping times such that S ≤ τ ≤
θ ≤ T . Then

1. 1AX ∈ Cτ,T for all X ∈ Cθ,T and A ∈ Fθ.

2. If φτ,θ is θ-relevant, and X is a process in R∞θ,T such that 1AX ∈ Cτ,T for all A ∈ Fθ,
then X ∈ Cθ,T .

3. If ξ is an (Ft)-stopping time such that θ ≤ ξ ≤ T and φτ,ξ is ξ-relevant, then φθ,ξ

is ξ-relevant too. In particular, the monetary utility functional process (φt,T )t∈[0,T ]∩N is
relevant if and only if φS,T is T -relevant.

Proof.
1. If X ∈ Cθ,T and A ∈ Fθ, then also 1AX ∈ Cθ,T . Obviously, 0 ∈ Cτ,θ. Hence, it follows
from Proposition 4.6 that 1AX = 0 + 1AX ∈ Cτ,T .
2. Assume 1AX ∈ Cτ,T for all A ∈ Fθ but X /∈ Cθ,T . Then there exists an ε > 0 such
that P [A] > 0, where A = {φθ,T (X) ≤ −ε}. By Proposition 4.6, there exist Y ∈ Cτ,θ

and Z ∈ Cθ,T such that 1AX = Y + Z. Since φθ,T (1AX) ≤ −ε1A, Zθ ≥ 1A(Xθ + ε) and
therefore, Yθ ≤ −ε1A. But then, since φτ,θ is θ-relevant, Y /∈ Cτ,θ, which is a contradiction.
3. Let ε > 0, t ∈ N and A ∈ Ft∧ξ. Set

B := A ∩ {
φθ,ξ(−ε1A1[t∧ξ,∞)) = 0

}

and note that
φθ,ξ(−ε1B1[t∧ξ,∞)) = 0 on B .

Therefore, also
φθ,ξ(−ε1B1[t∧ξ,∞)) = 0 on B̂ :=

⋂

C∈Fθ ; B⊂C

C .

Since
1B̂c φθ,ξ(−ε1B1[t∧ξ,∞)) = φθ,ξ(−ε1B̂c1B1[t∧ξ,∞)) = 0 ,

it follows that φθ,ξ(−ε1B1[t∧ξ,∞)) = 0. Hence, −ε1B1[t∧ξ,∞) ∈ Cθ,ξ, and therefore, by
statement 1, −ε1B1[t∧ξ,∞) ∈ Cτ,ξ. If φτ,ξ is ξ-relevant, then P [B] = 0, which shows that
φθ,ξ is ξ-relevant. ¤

Corollary 4.8 Let S ∈ N and T ∈ N∪{∞} such that S ≤ T . Let φ be a T -relevant mon-
etary utility functional on R∞S,T . Then there exists at most one time-consistent monetary
utility process (φt,T )t∈[S,T ]∩N with φS,T = φ.

Proof. Let (φt,T )t∈[S,T ]∩N be a time-consistent monetary utility process with φS,T = φ
and (Ct,T )t∈[S,T ]∩N the corresponding acceptance set process. By Proposition 4.7.3, φt,T is
T -relevant for all t ∈ [S, T ]∩N. Therefore it follows from 1. and 2. of Proposition 4.7 that
for all t ∈ [S, T ]∩N, a process X ∈ R∞t,T is in Ct,T if and only if 1AX ∈ CS,T for all A ∈ Ft.
This shows that Ct,T is uniquely determined by the acceptance set CS,T of φ. Hence, φt,T

is uniquely determined by φ. ¤
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4.2 Consistent extension of the time horizon.

Proposition 4.9 Let S ∈ N and T ∈ N ∪ {∞} such that S ≤ T . Let (φt,S)t∈[0,S]∩N
and (φt,T )t∈[S,T ]∩N be two time-consistent monetary utility functional processes with cor-
responding acceptance set processes (Ct,S)t∈[0,S]∩N and (Ct,T )t∈[S,T ]∩N, respectively. For
t ∈ [0, S), define

φt,T (X) := φt,S

(
X1[t,S) + φS,T (X)1[S,∞)

)
, X ∈ R∞t,T , (4.16)

and
Ct,T := Ct,S + CS,T . (4.17)

Then (φt,T )t∈[0,T ]∩N is a time-consistent monetary utility functional process with corre-
sponding acceptance set process (Ct,T )t∈[0,T ]∩N. If (φt,S)t∈[0,S]∩N and (φt,T )t∈[S,T ]∩N are
concave monetary utility functional processes, then so is (φt,T )t∈[0,T ]∩N. If (φt,S)t∈[0,S] ∩N
and (φt,T )t∈[S,T ]∩N are coherent, then (φt,T )t∈[0,T ]∩N is coherent too.

Proof. It can easily be checked that for all t ∈ [0, S), the mapping φt,T defined in (4.16)
is a monetary utility functional on R∞t,T with acceptance set Ct,T given by (4.17). Also, it
is obvious that φt,T is a concave monetary utility functional on R∞t,T if φt,S and φS,T are
concave monetary utility functionals, and φt,T is coherent if φt,S and φS,T are coherent.
To prove that (φt,T )t∈[0,T ]∩N is time-consistent, it is by Proposition 4.6 enough to show
that

Ct,T = Ct,θ + Cθ,T ,

for all t ∈ [0, S) ∩ N and every finite (Ft)-stopping time θ such that t ≤ θ ≤ T .
We first show Ct,θ + Cθ,T ⊂ Ct,T . Let Y ∈ Ct,θ and Z ∈ Cθ,T . By definition of Ct,T , Y

can be decomposed into Y = Y ′ + Y ′′, where Y ′ ∈ Ct,S and Y ′′ ∈ CS,T . It is easy to see
that Y ′′ can be chosen such that Y ′′ = 0 on {θ ≤ S}. Then

Y ′ ∈ Ct,θ∧S and Y ′′ ∈ CS,θ∨S .

Similarly, Z = Z ′ + Z ′′, where Z ′ ∈ Ct,S and Z ′′ ∈ CS,T can be chosen such that

Z ′ ∈ Cθ∧S,S and Z ′′ ∈ Cθ∨S,T .

Hence,
Y ′ + Z ′ ∈ Ct,S and Y ′′ + Z ′′ ∈ CS,T ,

and therefore,
Y + Z = Y ′ + Z ′ + Y ′′ + Z ′′ ∈ Ct,T .

To show Ct,T ⊂ Ct,θ + Cθ,T , we let X ∈ Ct,T . By definition of Ct,T , X = X ′+ X ′′, where
X ′ ∈ Ct,S and X ′′ ∈ CS,T . Since (φt,S)t∈[0,S]∩N and (φt,T )t∈[S,T ]∩N are time-consistent, we
get from Proposition 4.6 that

X ′ = Y ′ + Z ′ and X ′′ = Y ′′ + Z ′′ ,
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where Y ′ ∈ Ct,θ∧S , Z ′ ∈ Cθ∧S,S , Y ′′ ∈ CS,θ∨S and Z ′′ ∈ Cθ∨S,T . Note that 1{θ>S}Z ′ ∈ CS,S .
Hence,

1{θ>S}Z ′ = f1{θ>S}1[S,∞) for some f ∈ L∞+ (FS) .

It follows that
1{θ>S}Y ′′ + 1{θ>S}Z ′ ∈ CS,θ∨S ∩R∞t,θ ,

and therefore,
Y ′ + 1{θ>S}Y ′′ + 1{θ>S}Z ′ ∈ Ct,θ .

On the other hand,
1{θ≤S}Y ′′ ∈ CS,S ,

and therefore,
1{θ≤S}Y ′′ = g1{θ≤S}1[S,∞) for some g ∈ L∞+ (FS) .

Hence,
1{θ≤S}Y ′′ + 1{θ≤S}Z ′ ∈ Cθ∧S,S ∩R∞θ,T ,

and
1{θ≤S}Y ′′ + 1{θ≤S}Z ′ + Z ′′ ∈ Cθ,T .

¤

Remark 4.10 Let T ∈ N. Note that for all t = 0, . . . , T , there exists only one monetary
utility functional φt,t on R∞t,t. It is given by

φt,t(m1[t,∞)) = m, for m ∈ L∞(Ft) ,

and its acceptance set is

Ct,t =
{
m1[t,∞) | m ∈ L∞+ (Ω,Ft, P )

}
.

Now, for every t = 0, . . . T − 1, let φt,t+1 be an arbitrary monetary utility functional on
R∞t,t+1 with acceptance set Ct,t+1. It can easily be checked that for all t = 0, . . . T − 1,
the monetary utility functional process (φs,t+1)t+1

s=t is time-consistent. Therefore, it follows
from Proposition 4.9 that an acceptance set process (Ct,T )t∈[0,T ]∩N corresponding to a time-
consistent monetary utility functional process (φt,T )t∈[0,T ]∩N can be obtained by defining

Ct,T := Ct,t+1 + Ct+1,t+2 + · · ·+ CT−1,T , for all t = 0, 1, . . . , T − 1 .

4.3 Concatenation of elements in A1
+

Definition 4.11 Let a, b ∈ A1
+, θ a finite (Ft)-stopping time and A ∈ Fθ. Then the

concatenation a⊕θ
A b is defined by

(a⊕θ
A b)t :=





at on {t < θ} ∪Ac ∪
{
〈1, b〉θ,∞ = 0

}

aθ−1 +
〈1,a〉θ,∞
〈1,b〉θ,∞

(bt − bθ−1) on {t ≥ θ} ∩A ∩
{
〈1, b〉θ,∞ > 0

}
,
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where we set a−1 = b−1 = 0.

We say a subset Q of A1
+ is stable under concatenation if a ⊕θ

A b ∈ Q for all a, b ∈ Q,
every finite (Ft)-stopping time θ and all A ∈ Fθ.

Remarks 4.12
1. Let Q be a subset of A1

+ such that

a⊕s
A b ∈ Q for all a, b ∈ Q , s ∈ N and A ∈ Fs . (4.18)

Then

a⊕θ
A b ∈ Q for all a, b ∈ Q, each bounded (Ft)-stopping time θ, and A ∈ Fθ ,

and
a⊕θ

A b is in the ||.||A1-closure of Q
for all a, b ∈ Q, each finite (Ft)-stopping time θ and A ∈ Fθ.

Indeed, if Q has the property (4.18), set for each (Ft)-stopping time θ and A ∈ Fθ,
An := A ∩ {θ = n}, n ∈ N. Then all the following processes are in Q:

a0 := a⊕0
A0

b , an := an−1 ⊕n
An

b , n ≥ 1 .

If θ is bounded, then an = a⊕θ
A b for all n such that n ≥ θ. If θ is finite, then an → a⊕θ

A b
in ||.||1A, as n →∞.
2. Let θ be a finite (Ft)-stopping time and A ∈ Fθ. It can easily be checked that the
concatenation ⊕θ

A has the following properties:
(i) Let a1, a2, b ∈ A1

+ and λ ∈ (0, 1). Then

(λa1 + (1− λ)a2)⊕θ
A b = λ(a1 ⊕θ

A b) + (1− λ)(a2 ⊕θ
A b) .

(ii) Let a, b ∈ A1
+ and (aµ)µ∈M a net in A1

+ with

aµ → a in σ(A1,R∞) .

Then
aµ ⊕θ

A b → a⊕θ
A b in σ(A1,R∞) .

(iii) Let a, b ∈ A1
+, B = {〈1, b〉θ > 0} and (bµ)µ∈M a net in A1

+ with

bµ → b in σ(A1,R∞) .

Then
a⊕θ

A∩B bµ → a⊕θ
A b in σ(A1,R∞) .

Proposition 4.13 Let Q be a non-empty subset of A1
+ and denote by 〈Q〉 the smallest

σ(A1,R∞)-closed, convex subset of A1
+ that contains Q. Assume that

a⊕s
A b ∈ 〈Q〉 ,

for all a, b ∈ Q, s ∈ N and A ∈ Fs. Then 〈Q〉 is stable under concatenation.
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Proof. It follows from the properties (i) and (ii) of Remark 4.12.2 that

a⊕s
A b ∈ 〈Q〉

for all a ∈ 〈Q〉, b ∈ Q, s ∈ N and A ∈ Fs. Then, it can be shown as in Remark 4.12.1 that

a⊕θ
A b ∈ 〈Q〉

for all a ∈ 〈Q〉, b ∈ Q, every finite (Ft)-stopping time θ and A ∈ Fθ. Now, let a ∈
〈Q〉 , b1, b2 ∈ Q and λ ∈ (0, 1). Set

B1 :=
{〈

1, b1
〉
θ

> 0
}

and B2 :=
{〈

1, b2
〉
θ

> 0
}

.

Let C1, . . . , CN be finitely many disjoint sets in Fθ such that
⋃N

n=1 Cn = B1 ∩ B2 and
λ1, . . . , λN numbers in [0, 1]. Then the following processes are all in 〈Q〉:

c1 = λ1(a⊕θ
C1

b1) + (1− λ1)(a⊕θ
C1

b2) ,

c2 = λ2(c1 ⊕θ
C2

b1) + (1− λ2)(c1 ⊕θ
C2

b2) , . . .

. . . , cN = λN (cN−1 ⊕θ
CN

b1) + (1− λN )(cN−1 ⊕θ
CN

b2) .

Note that

cN
t =

{
at on {t < θ} ∪Bc

1 ∪Bc
2

aθ−1 + λn
〈1,a〉θ
〈1,b1〉θ (b1

t − b1
θ−1) + (1− λn) 〈1,a〉θ

〈1,b2〉θ (b2
t − b2

θ−1) on {t ≥ θ} ∩ Cn
.

Hence, since 〈Q〉 is σ(A1,R∞)-closed, it also contains the process c given by

ct =

{
at on {t < θ} ∪Bc

1 ∪Bc
2

aθ−1 + 〈1,a〉θ
〈1,λb1+(1−λ)b2〉θ

[
λ(b1

t − b1
θ−1) + (1− λ)(b2

t − b2
θ)

]
on {t ≥ θ} ∩B1 ∩B2 .

Next, notice that the processes

d1 = c⊕θ
B1\B2 b1 and d2 = d1 ⊕θ

B2\B1 b2

are in 〈Q〉, and
d2 = a⊕θ

A (λb1 + (1− λ)b2) .

Together with property (iii) of Remark 4.12.2, this implies that

a⊕θ
A b ∈ 〈Q〉

for all a, b ∈ 〈Q〉, every finite (Ft)-stopping time θ and A ∈ Fθ. ¤
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4.4 Time-consistent coherent utility functional processes

Theorem 4.14 Let T ∈ N ∪ {∞} and (φt,T )t∈[0,T ]∩N a relevant time-consistent coherent
utility process such that φ0,T can be represented as

φ0,T (X) = inf
a∈Q

〈X, a〉0,T , X ∈ R∞0,T ,

for some σ(R∞,A1)-closed, convex subset Q of D0,T . Then,
1. For every finite (Ft)-stopping time τ ≤ T ,

φτ,T (X) = ess infa∈Q
〈X, a〉τ,T

〈1, a〉τ,T

= ess infa∈Qe

〈X, a〉τ,T

〈1, a〉τ,T

, X ∈ R∞τ,T ,

where 〈X, a〉τ,T

〈1, a〉τ,T

is understood to be ∞ on
{
〈1, a〉τ,T = 0

}
,

and
Qe := Q∩De

0,T .

2. Q and Qe are stable under concatenation.

Proof.
1. Let (Ct,T )t∈[0,T ]∩N be the acceptance set process corresponding to (φt,T )t∈[0,T ]∩N.

Parts 1 and 2 of Proposition 4.7 imply that for every finite (Ft)-stopping time τ ≤ T and
X ∈ R∞τ,T ,

X ∈ Cτ,T ⇔ 1AX ∈ C0,T for all A ∈ Fτ .

It follows from Corollary 3.16 that

Q =
{

a ∈ D0,T | φ#
0,T (a) = 0

}
,

and from Corollary 3.24 that

φ0,T (X) = inf
a∈Qe

〈X, a〉0,T ,

where Qe = Q∩De
0,T . Hence, for all X ∈ R∞τ,T ,

X ∈ Cτ,T ⇔ 〈1AX, a〉0,T ≥ 0 for all A ∈ Fτ and a ∈ Qe

⇔ 〈X, a〉τ,T ≥ 0 for all a ∈ Qe .

This shows that φτ,T and the coherent utility functional

ess inf a∈Qe

〈X, a〉τ,T

〈1, a〉τ,T

, X ∈ R∞τ,T
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have the same acceptance set. Hence, they must be equal. It is clear that

ess infa∈Q
〈X, a〉τ,T

〈1, a〉τ,T

≤ ess infa∈Qe

〈X, a〉τ,T

〈1, a〉τ,T

, for all X ∈ R∞τ,T .

On the other hand, since X − φτ,T (X)1[τ,∞) ∈ Cτ,T , it follows that
〈
1A

(
X − φτ,T (X)1[τ,∞)

)
, a

〉
0,T

≥ 0 , for all A ∈ Fτ and a ∈ Q ,

and therefore, 〈(
X − φτ,T (X)1[τ,∞)

)
, a

〉
τ,T

〈1, a〉τ,T

≥ 0 , for all a ∈ Q ,

which shows that

ess infa∈Q
〈X, a〉τ,T

〈1, a〉τ,T

≥ φτ,T (X) , for all X ∈ R∞τ,T .

2. To show that Q is stable under concatenation, we assume by way of contradiction
that there exist a, b ∈ Q, a finite (Ft)-stopping time θ ≤ T and A ∈ Fθ such that
c := a⊕θ

A b /∈ Q. Since Q is σ(R∞,A1)-closed and convex, it follows from the separating
hyperplane theorem that there exists an X ∈ R∞0,T such that

〈X, c〉0,T < inf
d∈Q

〈X, d〉0,T = φ0,T (X) .

Note that

E


 ∑

j∈[θ,T ]∩N
Xj∆cj




= E


1{Ac∪{〈1,b〉θ,T =0}}

∑

j∈[θ,T ]∩N
Xj∆aj + 1{A∩{〈1,b〉θ,T >0}}

〈1, a〉θ,T

〈1, b〉θ,T

∑

j∈[θ,T ]∩N
Xj∆bj




= E

[(
1{Ac∪{〈1,b〉θ,T =0}}

〈X, a〉θ,T

〈1, a〉θ,T

1{〈1,a〉θ,T >0}

+1{A∩{〈1,b〉θ,T >0}}
〈X, b〉θ,T

〈1, b〉θ,T

) ∑

j∈[θ,T ]∩N
∆aj

]

≥ E


φθ,T (X)

∑

j∈[θ,T ]∩N
∆aj




Hence,

φ0,T (X) > 〈X, c〉0,T = E


 ∑

j∈[0,T ]∩N
Xj∆cj


 ≥ E


 ∑

j∈[0,θ)

Xj∆aj +
∑

j∈[θ,T ]∩N
φθ,T (X)∆aj




≥ φ0,T

(
X1[0,θ) + φθ,T (X)1[θ,∞)

)
,
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and therefore, (φt,T )t∈[0,T ]∩N is not time-consistent. But this contradicts the assumptions,
and therefore, Q has to be stable under concatenation. It follows immediately that Qe is
stable under concatenation. ¤

Remark 4.15 Let T ∈ N ∪ {∞} and Qe a non-empty subset of De
0,T . Define for all

t ∈ [0, T ] ∩ N,

φt,T (X) := ess infa∈Qe

〈X, a〉t,T
〈1, a〉t,T

, X ∈ R∞t,T .

Then, obviously, (φt,T )t∈[0,T ]∩N is a relevant coherent utility functional process, and it is
easy to see that for every finite (Ft)-stopping time τ ≤ T and all X ∈ R∞τ,T ,

φτ,T (X) = ess infa∈Qe

〈X, a〉τ,T

〈1, a〉τ,T

.

Theorem 4.16 Let T ∈ N∪{∞} and Qe a non-empty subset of De
0,T that is stable under

concatenation. Define for all t ∈ [0, T ] ∩ N,

φt,T (X) := ess infa∈Qe

〈X, a〉t,T
〈1, a〉t,T

, X ∈ R∞t,T .

Then (φt,T )t∈[0,T ]∩N is a relevant time-consistent coherent utility functional process.

Proof. By Remark 4.15, (φt,T )t∈[0,T ]∩N is a relevant coherent utility functional process
such that for every finite (Ft)-stopping time τ ≤ T and all X ∈ R∞τ,T ,

φτ,T (X) = ess infa∈Qe

〈X, a〉τ,T

〈1, a〉τ,T

.

To show time-consistency, we denote by (Ct,T )t∈[0,T ]∩N the acceptance set process corre-
sponding to (φt,T )t∈[0,T ]∩N and prove that

Ct,T = Ct,θ + Cθ,T ,

for all t ∈ [0, T ] ∩ N and every finite (Ft)-stopping time θ such that t ≤ θ ≤ T . If
Y ∈ Ct,θ ⊂ Ct,T and Z ∈ Cθ,T , then

〈Z, a〉θ,T ≥ 0 for all a ∈ Qe ,

which implies
〈Z, a〉t,T ≥ 0 for all a ∈ Qe .

Therefore, Z ∈ Ct,T and Y + Z ∈ Ct,T . This shows that Ct,θ + Cθ,T ⊂ Ct,T . To prove Ct,T ⊂
Ct,θ + Cθ,T , we choose a process X ∈ Ct,T . Obviously, Z := (X − φθ,T (X))1[θ,∞) ∈ Cθ,T ,
and it remains to show that

Y := X − Z = X1[t,θ) + φθ,T (X)1[θ,∞) ∈ Cτ,T . (4.19)
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Since Qe is stable under concatenation, the set
{
〈X, a〉θ,T

〈1, a〉θ,T

| a ∈ Qe

}

is directed downwards. Therefore, there exists a sequence (bn)n∈N in Qe such that
〈
X, b0

〉
θ,T

〈1, b0〉θ,T

≤ ||X||θ,∞ ≤ ||X||∞

and 〈X, bn〉θ,T

〈1, bn〉θ,T

↘ φθ,T (X) almost surely .

Moreover, a⊕θ
Ω bn ∈ Qe for all a ∈ Qe and n ∈ N. Hence,

0 ≤
〈
X, a⊕θ

Ω bn
〉

t,T
↘ 〈Y, a〉t,T almost surely ,

and therefore,
〈Y, a〉t,T ≥ 0 for all a ∈ Qe ,

which completes the proof. ¤

4.5 Time-consistent concave monetary utility functional processes

Definition 4.17 Let f ∈ L0(F) and τ a finite (Ft)-stopping time. If there exists a
g ∈ L1(F) such that f ≥ g, we define

E [f | Fτ ] := lim
n→∞E [f ∧ n | Fτ ] .

If there exists a g ∈ L1(F) such that f ≤ g, we define

E [f | Fτ ] := lim
n→−∞E [f ∨ n | Fτ ] .

If X is an adapted process on (Ω,F , (Ft)t∈N, P ) taking values in the interval [m,∞] for
some m ∈ R, we define for all a ∈ A1

+,

〈X, a〉τ,θ := lim
n→∞ 〈X ∧ n, a〉τ,θ .

If X takes values in [−∞,m], we define for all a ∈ A1
+,

〈X, a〉τ,θ := lim
n→−∞ 〈X ∨ n, a〉τ,θ .
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Remark 4.18 Let T ∈ N∪{∞} and (φt,T )t∈[0,T ]∩N a concave monetary utility functional
process such that for each t ∈ [0, T ] ∩ N, φt,T is given by

φt,T (X) = ess infa∈Dt,T

{
〈X, a〉t,T − γt,T (a)

}
, X ∈ R∞t,T ,

for a a special penalty function γt,T on Dt,T . Then it can easily be checked that for all
finite (Ft)-stopping times τ ≤ T ,

φτ,T (X) = ess infa∈Dτ,T

{
〈X, a〉τ,T − γτ,T (a)

}
, X ∈ R∞τ,T ,

where γτ,T is the special penalty function on Dτ,T given by

γτ,T (a) :=
∑

t∈[0,T ]∩N
1{τ=t}γt(1{τ=t}a + 1{τ 6=t}1[t,∞)) , a ∈ Dτ,T . (4.20)

Theorem 4.19 Let T ∈ N∪ {∞} and (φt,T )t∈[0,T ]∩N a time-consistent concave monetary
utility process such that for all t ∈ [0, T ] ∩ N,

φt,T (X) = ess infa∈Dt,T

{
〈X, a〉t,T − φ#

t,T (a)
}

, X ∈ R∞t,T .

Then
φ#

τ,T (a) = ess supb∈Dθ,T
φ#

τ,T

(
a⊕θ

Ω b
)

+ E
[
φ#

θ,T (a) | Fτ

]
, (4.21)

for every pair of finite (Ft)-stopping times τ, θ such that 0 ≤ τ ≤ θ ≤ T and all a ∈ Dτ,T .

Proof. Let τ and θ be two finite (Ft)-stopping times such that 0 ≤ τ ≤ θ ≤ T , and
(Ct,T )t∈[0,T ]∩N the acceptance set process corresponding to (φt,T )t∈[0,T ]∩N. It follows from
Remark 4.4.2 and Proposition 4.6 that for all a ∈ Dτ,T ,

φ#
τ,T (a) = ess infX∈Cτ,T

〈X, a〉τ,T

= ess infX∈Cτ,θ
〈X, a〉τ,T + ess infX∈Cθ,T

〈X, a〉τ,T

= ess infX∈Cτ,θ
〈X, a〉τ,T + E

[
ess infX∈Cθ,T

〈X, a〉θ,T | Fτ

]

= ess infX∈Cτ,θ
〈X, a〉τ,T + E

[
φ#

θ,T (a) | Fτ

]
. (4.22)

and for all a ∈ Dτ,T and b ∈ Dθ,T ,

φ#
τ,T (a⊕θ

Ω b) = ess infX∈Cτ,T

〈
X, a⊕θ

Ω b
〉

τ,T

= ess infX∈Cτ,θ

〈
X, a⊕θ

Ω b
〉

τ,T
+ ess infX∈Cθ,T

〈
X, a⊕θ

Ω b
〉

τ,T

= ess infX∈Cτ,θ
〈X, a〉τ,T + E

[
ess infX∈Cθ,T

〈X, b〉θ,T 〈1, a〉θ,T | Fτ

]

= ess infX∈Cτ,θ
〈X, a〉τ,T + E

[
φ#

θ,T (b) 〈1, a〉θ,T | Fτ

]
.
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By Remark 4.18,

φθ,T (X) = ess infa∈Dθ,T

{
〈X, a〉θ,T − φ#

θ,T (a)
}

, X ∈ R∞θ,T ,

which implies
ess supb∈Dθ,T

φ#
θ,T (b) = 0 ,

and therefore,
ess supb∈Dθ,T

E
[
φ#

θ,T (b) 〈1, a〉θ,T | Fτ

]
= 0 ,

Hence,
ess supb∈Dθ,T

φ#
τ,T

(
a⊕θ

Ω b
)

= ess infX∈Cτ,θ
〈X, a〉τ,T ,

which together with (4.22), proves (4.21). ¤

Corollary 4.20 Let T ∈ N ∪ {∞} and (φt,T )t∈[0,T ]∩N a relevant time-consistent concave
monetary utility process such that φ0,T is continuous for bounded decreasing sequences.
Then

φτ,T (X) = ess infa∈Dτ,T

{
〈X, a〉τ,T − φ#

τ,T (a)
}

= ess infa∈De
τ,T

{
〈X, a〉τ,T − φ#

τ,T (a)
}

,

for every finite (Ft)-stopping time τ ≤ T , and

φ#
τ,T (a) = ess supb∈Dθ,T

φ#
τ,T

(
a⊕θ

Ω b
)

+ E
[
φ#

θ,T (a) | Fτ

]

= ess supb∈De
θ,T

φ#
τ,T

(
a⊕θ

Ω b
)

+ E
[
φ#

θ,T (a) | Fτ

]
,

for every pair of finite (Ft)-stopping times τ, θ such that 0 ≤ τ ≤ θ ≤ T and all a ∈ Dτ,θ.

Proof. By Theorem 3.15, C0,T is σ(R∞,A1)-closed. Let τ ≤ T be a finite (Ft)-stopping
time and (Xµ)µ∈M a net in Cτ,T such that Xµ → X in σ(R∞,A1) for some X ∈ R∞τ,T .
Then, for each A ∈ Fτ , 1AXµ → 1AX in σ(R∞,A1), and by Proposition 4.7.1, (1AXµ)µ∈M

is a net in C0,T . Hence, 1AX ∈ C0,T , which by Proposition 4.7.2, implies that X ∈ Cτ,T .
This shows that Cτ,T is σ(R∞,A1)-closed. Hence, it follows from Theorem 3.15 that

φτ,T (X) = ess infa∈Dτ,T

{
〈X, a〉τ,T − φ#

τ,T (a)
}

. (4.23)

By Proposition 4.7.3, φτ,T is T -relevant, which by Corollary 3.23, implies that

φτ,T (X) = ess infa∈De
τ,T

{
〈X, a〉τ,T − φ#

τ,T (a)
}

. (4.24)

By Theorem 4.19, it follows from (4.23) that

φ#
τ,T (a) = ess supb∈Dθ,T

φ#
τ,T

(
a⊕θ

Ω b
)

+ E
[
φ#

θ,T (a) | Fτ

]
,
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for every pair of finite (Ft)-stopping times τ, θ such that 0 ≤ τ ≤ θ ≤ T and all a ∈ Dτ,θ.
In the proof of Theorem 4.19 we showed that for all a ∈ Dτ,T and b ∈ Dθ,T ,

φ#
τ,T (a⊕θ

Ω b) = ess infX∈Cτ,θ
〈X, a〉τ,T + E

[
φ#

θ,T (b) 〈1, a〉θ,T | Fτ

]
,

and it follows from (4.23) and (4.24) that

ess supb∈Dθ,T
φ#

θ,T (b) = ess supb∈De
θ,T

φ#
θ,T (b) = 0 .

Hence,

ess supb∈Dθ,T
E

[
φ#

θ,T (b) 〈1, a〉θ,T | Fτ

]
= ess supb∈De

θ,T
E

[
φ#

θ,T (b) 〈1, a〉θ,T | Fτ

]
= 0 ,

and therefore,

ess supb∈Dθ,T
φ#

τ,T

(
a⊕θ

Ω b
)

= ess supb∈De
θ,T

φ#
τ,T

(
a⊕θ

Ω b
)

.

¤

Definition 4.21 Let T ∈ N ∪∞ and θ ≤ T a finite (Ft)-stopping time.

For every a ∈ D0,T , we define the process
→θ
a ∈ Dθ,T as follows:

→θ
a :=





a
〈1,a〉θ,T

1[θ,∞) on
{
〈1, a〉θ,T > 0

}

1[θ,∞) on
{
〈1, a〉θ,T = 0

}

If γθ,T is a special penalty function on Dθ,T , we extend it to D0,T by setting

γext
θ,T (a) :=




〈1, a〉θ,T γθ,T

(
→θ
a

)
on

{
〈1, a〉θ,T > 0

}

0 on
{
〈1, a〉θ,T = 0

} , a ∈ D0,T .

Theorem 4.22 Let T ∈ N ∪ {∞} and (φt,T )t∈[0,T ]∩N a concave monetary utility process
such that for every t ∈ [0, T ] ∩ N and X ∈ R∞t,T ,

φt,T (X) = ess infa∈Dt,T

{
〈X, a〉t,T − γt,T (a)

}
,

for a special penalty function γt,T on Dt,T . Assume that at least one of the following two
conditions is satisfied:

(1) For each t ∈ [0, T ] ∩ N and every finite (Ft)-stopping time θ such that t ≤ θ ≤ T ,

γt,T (a) = ess supb∈Dθ,T
γt,T (a⊕θ

Ω b) + E
[
γext

θ,T (a) | Ft

]
, for all a ∈ Dt,T .

(2) T ∈ N, and for each t = 0, . . . , T − 1,

γt,T (a) = ess supb∈Dt+1,T
γt,T (a⊕t+1

Ω b) + E
[
γext

t+1,T (a) | Ft

]
, for all a ∈ Dt,T .

Then (φt,T )t∈[0,T ]∩N is time-consistent.
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Proof. Let t ∈ [0, T ] ∩N and θ a finite (Ft)-stopping time such that 0 ≤ t ≤ θ ≤ T . First,
note that

γt,T (a) ≥ ess supb∈Dθ,T
γt,T (a⊕θ

Ω b) + E
[
γext

θ,T (a) | Ft

]
, for all a ∈ Dt,T , (4.25)

implies that for all a ∈ Dt,T and b ∈ Dθ,T ,

γt,T (a⊕θ
Ω b) ≥ γt,T (a) + E

[
γext

θ,T (a⊕θ
Ω b) | Ft

]
,

and therefore,
〈
X[t,θ) +

[
〈X, b〉θ,T − γθ,T (b)

]
1[θ,∞), a

〉
t,T
− γt,T (a)

=
〈
X, a⊕θ

Ω b
〉

t,T
− 〈

γθ,T (b)1[θ,∞), a
〉
t,T
− γt,T (a)

=
〈
X, a⊕θ

Ω b
〉

t,T
− E

[
γext

θ,T (a⊕θ
Ω b) | Ft

]
− γt,T (a)

≥
〈
X, a⊕θ

Ω b
〉

t,T
− γt,T (a⊕θ

Ω b) ,

for all X ∈ R∞t,T . This shows that

φt,T (X) ≤ φt,T (X1[t,θ) + φθ,T (X)1[θ,∞]) , for all X ∈ R∞t,T .

On the other hand, it follows from

γt,T (a) ≤ ess supb∈Dθ,T
γt,T (a⊕θ

Ω b) + E
[
γext

θ,T (a) | Ft

]
, for all a ∈ Dt,T

that

〈X, a〉t,T − γt,T (a)

≥ 〈X, a〉t,T − E
[
γext

θ,T (a) | Ft

]− ess supb∈Dθ,T
γt,T (a⊕θ

Ω b)

= ess infb∈Dθ,T





〈
X1[t,θ) +

[〈
X,

→θ
a

〉

θ,T

− γθ,T

(
→θ
a

)]
1[θ,∞), a⊕θ

Ω b

〉

t,T

− γt,T (a⊕θ
Ω b)





≥ ess infb∈Dθ,T

{〈
X1[t,θ) + φθ,T (X)1[θ,∞), a⊕θ

Ω b
〉

t,T
− γt,T (a⊕θ

Ω b)
}

≥ φt,T

(
X1[t,θ) + φθ,T (X)1[θ,∞)

)
,

for all X ∈ R∞t,T and a ∈ Dt,T , which shows that

φt,T (X) ≥ φt,T (X1[t,θ) + φθ,T (X)1[θ,∞)) , for all X ∈ R∞t,T .

This shows that it follows directly from condition (1) that (φt,T )t∈[0,T ]∩N is time-consistent.
If condition (2) is satisfied, then (φt,T )t∈[0,T ]∩N is time consistent because it fulfills the
assumption (4.14) of Proposition 4.5. ¤
Exactly the same arguments as in the proof of Theorem 4.22 yield the following
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Corollary 4.23 Let T ∈ N ∪ {∞} and (φt,T )t∈[0,T ]∩N a concave monetary utility process
such that for all t ∈ [0, T ] ∩ N and X ∈ R∞t,T ,

φt,T (X) = ess infa∈De
t,T

{
〈X, a〉t,T − γt,T (a)

}
,

for a special penalty function γt,T on Dt,T . Assume that at least one of the following two
conditions is satisfied:

(1) For each t ∈ [0, T ] ∩ N and every finite (Ft)-stopping time θ such that t ≤ θ ≤ T ,

γt,T (a) = ess supb∈De
θ,T

γt,T (a⊕θ
Ω b) + E

[
γext

θ,T (a) | Ft

]
, for all a ∈ De

t,T .

(2) T ∈ N, and for each t = 0, . . . , T − 1,

γt,T (a) = ess supb∈De
t+1,T

γt,T (a⊕t+1
Ω b) + E

[
γext

t+1,T (a) | Ft

]
, for all a ∈ De

t,T .

Then (φt,T )t∈[0,T ]∩N is time-consistent.

5 Special cases and examples

In much of this section the concept of m-stability plays an important role. It can be viewed
as a special case of the concept of stability under concatenation and appears under various
names in Artzner et al. (2002), Roorda et al. (2003), Epstein and Schneider (2003), Wang
(2003), Riedel (2004) and Delbaen (2004).

If T = ∞, we denote by F∞ the sigma-algebra generated by
⋃

t∈NFt.

Definition 5.1 For T ∈ N ∪ {∞}, f, g ∈ {
h ∈ L1(FT ) | h ≥ 0 , E [h] = 1

}
, a finite (Ft)-

stopping time θ ≤ T and A ∈ Fθ, we define

f ⊗θ
A g :=

{
f on Ac ∪ {E [g | Fθ] = 0}
E [f | Fθ]

g
E[g|Fθ] on A ∩ {E [g | Fθ] > 0} , (5.26)

and we call a subset P of
{
h ∈ L1(FT ) | h ≥ 0 , E [h] = 1

}
m-stable if it contains f ⊗θ

A g
for all f, g ∈ P, every finite (Ft)-stopping time θ ≤ T and A ∈ Fθ.

Let T ∈ N ∪ {∞} and P a non-empty subset of
{
h ∈ L1(FT ) | h ≥ 0 , E [h] = 1

}
.

If for all s ∈ [0, T ]∩N, A ∈ Fs and f, g ∈ P, f ⊗s
A g is in the σ(L1, L∞)-closed, convex hull

〈P〉 of P, then it can be shown as in the proof of Proposition 4.13 that 〈P〉 is m-stable.
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5.1 Processes of coherent utility functionals that depend on the final
value

Let T ∈ N and P a non-empty subset of the set
{
h ∈ L1(FT ) | h ≥ 0 , E [h] = 1

}
.

Then
Q(P) :=

{
f1[T,∞) | f ∈ P

}

is a non-empty subset of D0,T , and the concatenation of two elements

a = f1[T,∞) and b = g1[T,∞)

in Q(P) at an (Ft)-stopping time θ ≤ T for a set A ∈ Fθ is equal to
(
f ⊗θ

A g
)

1[T,∞) .

This shows that Q(P) is stable under concatenation if and only if P is m-stable.
If Pe is a non-empty subset of

{
h ∈ L1(FT ) | h > 0 , E [h] = 1

}
,

then Q(Pe) is a non-empty subset of De
0,T , and

φt,T (X) := ess infa∈Q(Pe)

〈X, a〉t,T
〈1, a〉t,T

= ess inff∈Pe
E [fXT | Ft]

E [f | Ft]
, t = 0, . . . , T , X ∈ R∞t,T ,

defines a relevant coherent utility functional process.
If Pe is m-stable, it follows from Theorem 4.16 that (φt,T )T

t=0 is time-consistent. On the
other hand, if (φt,T )T

t=0 is time consistent, then by Theorem 4.14, the σ(A1,R∞)-closed
convex hull of Q(Pe) is stable under concatenation, which implies that the σ(L1, L∞)-
closed, convex hull of Pe is m-stable.

This class of time-consistent coherent utility functional processes appears in Artzner et
al. (2002), Roorda et al. (2003) and in a continuous-time setup in Delbaen (2004). Rosazza
Gianin (2003) studies the relation between time-consistent monetary utility functionals
that depend on real-valued random variables and g-expectations.

5.2 Processes of coherent utility functionals defined by m-stable sets
and worst stopping

Let T ∈ N ∪ {∞} and Pe a non-empty m-stable subset of
{
h ∈ L1(FT ) | h > 0 , E [h] = 1

}
.

For all t ∈ [0, T ] ∩ N, define

ψt(Y ) := ess inff∈Pe
E [f Y | Ft]
E [f | Ft]

, Y ∈ L∞(FT ) ,
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and for all X ∈ R∞t,T ,

φt,T (X) := ess inf {ψt(Xξ) | ξ a finite (Ft)-stopping time such that t ≤ ξ ≤ T} . (5.27)

Then (φt,T )t∈[0,T ]∩N is a time-consistent relevant coherent utility functional process.
To see this, note that φ0,T is a T -relevant coherent utility functional on R∞0,T that can

be represented as
φ0,T (X) = inf

a∈Q(Pe)
〈X, a〉0,T , X ∈ R∞0,T ,

where Q(Pe) is the non-empty subset of D0,T given by

Q(Pe) :=
{
E [f | Fξ] 1[ξ,∞) | f ∈ Pe , ξ ≤ T a finite (Ft)-stopping time

}
.

It follows from the Corollaries 3.16 and 3.24 that

φ0,T (X) = inf
a∈Q

〈X, a〉0,T = inf
a∈Qe

〈X, a〉0,T , X ∈ R∞0,T ,

where Q is the σ(A1,R∞)-closed, convex hull of Q(Pe) and Qe = Q∩De
0,T .

Let θ ≤ T be a finite (Ft)-stopping time, A ∈ Fθ and a, b two processes in Q(Pe) of
the form

a = fa1[ξa,∞) and b = fb1[ξb,∞) ,

where ξa ≤ T and ξb ≤ T are finite (Ft)-stopping times, fa = E
[
f̂a | Fξa

]
and fb =

E
[
f̂b | Fξb

]
for f̂a, f̂b ∈ Pe. Then

(a⊕θ
A b)t = 1Bc fa 1{t≥ξa} + 1B

E [fa | Fθ]
E [fb | Fθ]

fb 1{t≥ξb}

= 1Bc fa 1{t≥ξa} + 1B

E
[
f̂a | Fθ

]

E
[
f̂b | Fθ

] fb 1{t≥ξb}

= E
[
f̂ | Fξ

]
1{t≥ξ} ,

where
B = A ∩ {t ≥ θ} ∩ {ξb ≥ θ} ∩ {ξa ≥ θ} ∈ Fθ∧ξa∧ξb

,

f̂ = f̂a ⊗θ
B f̂b and ξ = 1Bcξa + 1Bξb .

It follows from the m-stability of Pe that Q(Pe) is stable under concatenation. Proposition
4.13 implies thatQ, and therefore alsoQe are stable under concatenation. Hence, it follows
from Theorem 4.16 that the sequence of functions (φ̃t,T )t∈[0,T ]∩N given by

φ̃t,T (X) := ess infa∈Qe

〈X, a〉t,T
〈1, a〉t,T

, t ∈ [0, T ] ∩ N , X ∈ R∞t,T ,

is a time-consistent relevant coherent utility functional process, and it can easily be checked
that φ̃t,T = φt,T for all t ∈ [0, T ] ∩ N.

For finite time horizon T , this class of time-consistent coherent utility functional pro-
cesses is also discussed in Artzner et al. (2002) and in a continuous-time setup in Delbaen
(2004).
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5.3 Processes of coherent utility functionals that depend on the infimum
over time

Let T ∈ N ∪ {∞} and Pe a non-empty subset of the set
{
h ∈ L1(FT ) | h > 0 , E [h] = 1

}
.

For all t ∈ [0, T ] ∩ N, define

ψt(Y ) := ess inff∈Pe
E [f Y | Ft]
E [f | Ft]

, Y ∈ L∞(FT ) ,

and

φt,T (X) := ψt

(
inf

s∈[t,T ]∩N
Xs

)
, X ∈ R∞t,T .

Then (φt,T )t∈[0,T ]∩N is a relevant coherent utility functional process. But even if Pe is
m-stable, (φt,T )t∈[0,T ]∩N is in general not time-consistent.

For an easy counter-example, consider a probability space of the form Ω = {ω1, ω2, ω3, ω4}
with P [ωj ] = 1

4 for all j = 1, . . . , 4. Let T = 2 and assume that the filtration (Ft)2t=0 is
given as follows: F0 = {∅, Ω}, F1 is generated by the set {ω1, ω2} and F2 is generated by
the sets {ωj}, j = 1, . . . , 4. If Pe = {1}. Then, for t ∈ {0, 1, 2} and X ∈ R∞t,2,

φt,2(X) = E
[

inf
t≤s≤2

Xs | Ft

]
.

If X0 = 2, X1(ω1) = X1(ω2) = 4, X1(ω3) = X1(ω4) = 1, X2(ω1) = 5, X2(ω2) = 1,
X2(ω3) = 2 and X2(ω4) = −1, then φ0,2(X) = 3

4 . On the other hand, φ1,2(X) = 5
2 on

{ω1, ω2} and φ1,2(X) = 0 on {ω3, ω4}. Hence, φ0,2(X1{0} + φ1,2(X)1[1,2]) = 1.

5.4 Processes of monetary risk measures that depend on an average over
time

Let T ∈ N ∪ {∞} and Pe a non-empty subset of the set
{
h ∈ L1(FT ) | h > 0 , E [h] = 1

}
.

For all t ∈ [0, T ] ∩ N, define

ψt(Y ) := ess inff∈Pe
E [f Y | Ft]
E [f | Ft]

, Y ∈ L∞(FT ) ,

and

φt,T (X) := ψt

(∑
s∈[t,T ]∩N µsXs∑

s∈[t,T ]∩N µs

)
, X ∈ R∞t,T ,

where (µs)s∈N is a sequence of non-negative numbers such that
∑

s∈[0,T ]∩N
µs = 1 ,
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and ∑

s∈[t,T ]∩N
µs > 0 for all t ∈ [0, T ] ∩ N .

Then (φt,T )t∈[0,T ]∩N is obviously a relevant coherent utility functional process, and if Pe

is m-stable, then (φt,T )t∈[0,T ]∩N is time-consistent.
To see this we denote for f ∈ Pe by J(f) the process a ∈ De

0,T given by

∆at := µtE [f | Ft] for all t ∈ N .

Clearly,

φt,T (X) = ess infa∈J(Pe)

〈X, a〉t,T
〈1, a〉t,T

for all t ∈ [0, T ] ∩ N and X ∈ R∞t,T ,

and it can easily be checked that for all f, g ∈ Pe, every finite (Ft)-stopping time θ ≤ T
and A ∈ Fθ,

J(f)⊕θ
A J(g) = J(f ⊗θ

A g) .

Hence, J(Pe) is stable under concatenation, and it follows from Theorem 4.16 that
(φt,T )t∈[0,T ]∩N is time-consistent.

5.5 Processes of robust entropic utility functionals

Let T ∈ N and Pe a non-empty subset of
{
h ∈ L1(FT ) | h > 0 , E [h] = 1

}
.

For t = 0, . . . , T and X ∈ R∞t,T , define

φt,T (X) := ess inff∈Pe

{
− log

E [f exp(−XT ) | Ft]
E [f | Ft]

}
, X ∈ R∞0,T .

Then, for all t = 0, . . . , T , φt,T is a T -relevant concave monetary utility functional on R∞t,T
that is continuous for bounded decreasing sequences, and (φt,T )T

t=0 is time-consistent if Pe

is m-stable. Indeed, it is obvious that for all t = 0, . . . , T , φt,T is a T -relevant monetary
utility functional on R∞t,T . To show the other assertions, we introduce for all f ∈ Pe and
t = 0, . . . , T , the mappings

ψf
t (Y ) := − log

E [f exp(−Y ) | Ft]
E [f | Ft]

, Y ∈ L∞(FT )

and
ψt(Y ) := ess inff∈Peψf

t (Y ) , Y ∈ L∞(FT ) .

To see that for all t = 0, . . . , T , φt,T is continuous for bounded decreasing sequences we let
(Y n)n∈N be a decreasing sequence in L∞(FT ) and Y ∈ L∞(FT ) such that limn→∞ Y n = Y
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almost surely. Then limn→∞ ψt(Y n) exists almost surely and limn→∞ ψt(Y n) ≥ ψt(Y ). On
the other hand, there exists a sequence (fk)k∈N in Pe such that ψt(Y ) = infk∈N ψfk

t (Y )
almost surely, and for all k ∈ N,

ψfk

t (Y ) = lim
n→∞ψfk

t (Y n) ≥ lim
n→∞ψt(Y n) ,

Hence, ψt(Y ) ≥ limn→∞ ψt(Y n), which shows that φt,T is continuous for bounded decreas-
ing sequences.

To see that φt,T satisfies condition (3) of Definition 3.1, fix an f ∈ Pe and a Z ∈
L∞(FT ). Then, define fZ ∈ L1(FT ) by

fZ :=
f exp (−Z)

E [f exp (−Z) | Ft]
,

and note that it follows from Jensen’s inequality that for all Y ∈ L∞(FT ),

ψf
t (Y ) = − log

E
[
fZ

f
fZ

exp (−Y ) | Ft

]

E [f | Ft]

= − log E [fZ exp (Z − Y ) | Ft]− log
E [f exp (−Z) | Ft]

E [f | Ft]

≤ E [fZ(Y − Z) | Ft] + ψf
t (Z) .

This shows that for all Y ∈ L∞(FT ),

ψf
t (Y ) = ess infZ∈L∞(FT )

{
E [fZY | Ft]− E [fZZ | Ft] + ψf

t (Z)
}

, (5.28)

and therefore,

ψt(Y ) = ess inff∈Pe , Z∈L∞(FT )

{
E [fZY | Ft]− E [fZZ | Ft] + ψf

t (Z)
}

,

from which it can be seen that φt,T satisfies condition (3) of Definition 3.1.
Now, assume that Pe is m-stable. Then, for all t = 0, . . . , T and Y ∈ L∞(FT ), the set

{
ψf

t (Y ) | f ∈ Pe
}

is directed downwards because for all f, g ∈ Pe,

ψf
t (Y ) ∧ ψg

t (Y ) = ψh
t (Y ) ,

where
h = f ⊗t

A g for A =
{

ψg
t (Y ) < ψf

t (Y )
}

.

Hence, there exists a sequence (fk)k∈N in Pe such that almost surely,

ψfk

t (Y ) ↘ ψt(T ) , as k →∞ .
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Next, note that for all t = 0, . . . , T − 1, f, g ∈ Pe and Y ∈ L∞(FT ),

ψf
t (ψg

t+1(Y )) = ψh
t (Y ) ,

where
h = f ⊗t+1

Ω g .

It follows that
ψt(ψt+1(Y )) = ψt(Y ) ,

for all t = 0, . . . , T − 1 and Y ∈ L∞(FT ), and therefore,

φt,T (X1{t} + φt+1,T (X)1[t+1,∞)) = φt,T (X) ,

for all t = 0, . . . , T − 1 and X ∈ R∞t,T , which by Proposition 4.5, implies that (φt,T )T
t=0 is

time-consistent.
The utility functional φ0,T is a robust version of the mapping

C : L∞(FT ) → R , Y 7→ − log E [exp(−Y )] ,

which assigns a random variable Y ∈ L∞(FT ) its certainty equivalent under the exponen-
tial utility function

x 7→ − exp(−x) .

It is well known that C admits the representation

C(Y ) = inf
Q
{EQ[Y ] + H(Q | P )} , (5.29)

where the infimum is taken over all probability measures Q on (Ω,FT ) and H(Q | P ) is the
relative entropy of Q with respect to P . In fact, it can easily be checked that the penalty
function in the representation (5.28) is the conditional relative entropy of fZ with respect
to f . For more details and relations to pricing in incomplete markets we refer to Frittelli
(2000), Rouge et al. (2000) and Delbaen et al. (2002). More on the entropic risk measure
−C can be found in Föllmer and Schied (2002a) and Weber (2003). A conditional version
of the entropic risk measure is studied in Detlefsen (2003). In Frittelli and Rosazza Gianin
(2004) it is shown that the dynamic entropic risk measure is time-consistent in continuous
time.

5.6 Time-consistent monetary utility functional processes and worst
stopping

For finite time horizon the coherent utility functional processes of Subsection 5.2 can be
generalized as follows:

Let T ∈ N and (φ̂t,T )T
t=0 a time-consistent monetary utility functional process on R∞

0,T

such that for all t = 0, . . . , T and X ∈ R∞t,T , φ̂t,T (X) depends only on the final value XT

of X, that is, for all t = 0, . . . , T ,

φ̂t,T (X) = ψt(XT ) ,
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where ψt is a mapping from L∞(FT ) to L∞(Ft) that satisfies the following conditions:

(0) ψt(1AY ) = 1Aψ(Y ) for all Y ∈ L∞(FT ) and A ∈ Ft

(1) ψt(Y ) ≤ ψt(Z) for all Y,Z ∈ L∞(FT ) such that Y ≤ Z

(2) ψt(Y + m) = ψt(Y ) + m for all Y ∈ L∞(FT ) and m ∈ L∞(Ft)

(tc) ψt(ψt+1(Y )) = ψt(Y ), for all t = 0, . . . , T − 1 and Y ∈ L∞(FT ).

Denote by Θt,T the set of all (Ft)-stopping times ξ such that t ≤ ξ ≤ T , and define a new
monetary utility functional process by

φt,T (X) := ess infξ∈Θt,T
ψt(Xξ) .

For a given X ∈ R∞0,T , define the process (St(X))T
t=0 recursively by

ST (X) := XT

and
St(X) := Xt ∧ ψt(St+1(X)) , for t ≤ T − 1 .

For all t = 0, . . . , T , denote by ξt the stopping time given by

ξt := inf {j = t, . . . , T | Sj(X) = Xj} .

It can easily be checked that

φt,T (X) = ψt(Xξt) = St(X) .

For a t ∈ [0, T − 1]∩N, set Y := X1{t}+φt,T (X)1[t+1,∞). It is easy to see that St+1(Y ) =
St+1(X). Therefore,

φt,T (Y ) = St(Y ) = Yt ∧ ψt(St+1(Y )) = Xt ∧ ψt(St+1(X)) = St(X) = φt,T (X) ,

which shows that (φt,T )T
t=0 is time-consistent.
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