
Asymptotic Analysis for Optimal
Investment and Consumption with

Transaction Costs

Karel Janeček
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1 Introduction

We consider the problem of an agent seeking to optimally invest and consume in
the presence of proportional transaction costs. The agent can invest in a stock,
modeled as a geometric Brownian motion, and in a money market with constant
rate of interest. She may also consume and get utility U(c) = c1−p/(1 − p),
where p > 0, p 6= 1. In addition, the agent must pay a proportional transaction
cost λ > 0 for transferring capital between the stock and money market. All
consumption is done from the money market. The agent wishes to maximize
the expected discounted integral over [0,∞) of the utility of consumption.

When the transaction cost λ is zero, the agent’s optimal policy is to keep a
constant proportion of wealth, which we call the Merton proportion and denote
θp, invested in the stock; see Merton [40]. When λ > 0, the optimal policy is
to trade as soon as the position is sufficiently far from the Merton proportion.
More specifically, the agent’s optimal policy is to maintain her position inside
a wedge called the No Trade (NT ) region. Trading occurs when the position
hits the boundaries of the NT region and no trading occurs in the interior of
NT . If the agent’s position is initially outside NT , she should immediately
sell or buy stock in order to move to the boundary of NT . Except when the
left boundary of NT is the positive y-axis, the set of trading times has zero
Lebesgue measure, and the total amount of capital traded can be characterized
by a possible initial jump plus local time on the boundary of NT . When the left
boundary of NT is the positive y-axis, the agent will stay on the y-axis once she
arrives there. This problem was formulated by Magill & Constantinides [39],
solved under restrictive conditions by Davis & Norman [15], and thoroughly
analyzed by Shreve & Soner [43]. Although the nature of the solution can be
characterized, there is no explicit formula for this solution.

The Hamilton-Jacobi-Bellman (HJB) equation for the optimal control prob-
lem with transaction costs is a partial differential equation in two variables. For
the power utility functions considered here, this can be reduced to an equation
in one variable. Numerical results are provided by [1], [46], [47]. A useful and
perhaps more informative approach for obtaining explicit results, the approach
of this paper, is to develop a power series expansion for the value function and
the boundaries of the NT region in powers of λ. For example, Constantinides
[9] numerically computed the effect of transaction costs on the value function
for our problem, and observed that transaction costs have a “first-order effect
on assets’ demand” and a “second-order effect on equilibrium asset return.” In
this paper, we make these statements precise by observing that the width of the
NT region is large, of order λ1/3, whereas the effect of transaction cost on the
value function is smaller, of order λ2/3.

The asymptotic expansion is valid for any Merton proportion θp, except
for the case in which all wealth is invested in stock (θp = 1). In particular,
we refute the conjecture in [43] that the Merton line (the set of stock/money
market positions which are in the Merton proportion) is outside NT for θp > 1.
This is the case for sufficiently high transaction costs. However, for sufficiently
small transaction costs the Merton line is inside NT .
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In the presence of transaction costs, contingent claim pricing by replication,
or more generally by super-replication, has received considerable attention but
often leads to a trivial result: the cheapest strategy is buy-and-hold. See [6],
[14], [18], [20], [30], [31], [33], [34], [37], [44].

One alternative to the extremely conservative super-replication method for
contingent claim prices, pioneered by Leland [36], is to strike a trade-off between
transaction costs and “hedge slippage,” and this leads to a modified Black-
Scholes equation; see, for example, [3], [4], [5], [7], [19], [25], [23], [45]. Another
method, proposed by Hodges and Neuberger [24], is to price an option so that a
utility maximizer is indifferent between either having a certain initial capital for
investment or else holding the option but having initial capital reduced by the
price of the option. This produces both a price and a hedge, the latter being the
difference in the optimal trading strategies in the problem without the option
and the problem with the option. This utility-based option pricing is examined
in [10], [11], [16]. A formal asymptotic analysis of such an approach appears
in [49]. Once again, the methodology developed in this paper suggests how to
make this analysis rigorous. We note that in some of these papers the utility
function is U(c) = c1−p/(1 − p) with p restricted to be in (0, 1). We include
p > 1 in our analysis because p ∈ (0, 1) leads to intolerably risky behavior. See
Samuelson [42] for the argument in words of one syllable that this is the case
even for logarithmic utility (p = 1).

The transaction cost problem with multiple stocks was studied by [1], [29].
For a jump diffusion model, see [21]. Transaction cost problems have dual
formulations which can shed light on their solutions; see [12], [13], [17] [38].
Other papers which study super-martingales and conditions for no-arbitrage in
these models are [12], [26], [27], [28], [35], [48].

In Section 2 we set out the model. Section 3 provides a heuristic expansion
of the value function in powers of λ1/3. The key results of Section 3 are proved
in Section 4, using viscosity sub- and supersolutions to the HJB equation.

2 Model set-up and known results

The set-up of the model is similar to Shreve & Soner [43]. An agent is given an
initial position of x dollars in the money market and y dollars in stock. The stock
price is given by dSt = αSt dt + σSt dWt, where α and σ are positive constants
and {Wt, t ≥ 0} is a standard Brownian motion on a filtered probability space(
Ω,F , {Ft}t≥0,P

)
. We assume a constant interest rate r < α. The agent

must choose a policy consisting of three adapted processes C, L, and M . The
consumption process C is nonnegative and integrable on each finite interval. The
processes L and M are nondecreasing and right-continuous with left limits, and
L0− = M0− = 0. Lt represents the cumulative dollar value of stock purchased
up to time t, while Mt is the cumulative dollar value of stock sold.

Let Xt denote the wealth invested in the money market and Yt the wealth
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invested in stock, with X0− = x, Y0− = y. The agent’s position evolves as

dXt = (rXt − Ct) dt− (1 + λ) dLt + (1− λ) dMt, (2.1)
dYt = αYt dt + σYt dWt + dLt − dMt. (2.2)

The constant λ ∈ (0, 1) appearing in these equations accounts for proportional
transaction costs, which are paid from the money market account.

Define the solvency region

S , {(x, y); x + (1 + λ) y > 0, x + (1− λ) y > 0} .

The policy (C,L, M) is admissible for (x, y) if (Xt, Yt) given by (2.1), (2.2) is
in S for all t ≥ 0. We denote by A(x, y) the set of all such policies. We note
that A(x, y) 6= ∅ if and only if (x, y) ∈ S; see [43], Remarks 2.1 and 2.2.

We introduce the agent’s utility function Up defined for all c ≥ 0 by Up(c) ,
c1−p/(1 − p). (An analysis along the lines of this paper is also possible for
U0(c) = log c, but we omit that in the interest of brevity.) Let β > 0 be a
positive discount rate and define the value function

v(x, y) = sup
(C,L,M)∈A(x,y)

E
∫ ∞

0

e−βtUp(Ct) dt, (x, y) ∈ S.

This problem when λ = 0 was solved by Merton [40], who determined that
the optimal policy always keeps a wealth proportion

θp =
1
p

α− r

σ2
,

in the stock. We call θp the Merton proportion. For λ = 0,

v(x, y) =
1

1− p
A−p(p)(x + y)1−p,

where

A(p) , β − r(1− p)
p

− 1
2
σ2θ2

p(1− p).

The optimal consumption in feedback form is Ct = A(p)(Xt + Yt).
We assume throughout that A(p) > 0, which guarantees that the value

function for the problem with zero transaction cost is finite.
We introduce the convex dual function Ũp : (0,∞) 7→ R defined by

Ũp(c̃) , sup
c>0

{Up(c)− cc̃} =
p

1− p
c̃−(1−p)/p. (2.3)

The supremum in (2.3) is attained by c = c̃−1/p.
Shreve and Soner [43] show that the value function is a smooth solution of

the Hamilton-Jacobi-Bellman (HJB) equation

min
{
Lv − Ũp(vx), −(1− λ)vx + vy, (1 + λ)vx − vy

}
= 0, (2.4)
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where the second-order differential operator L is given by

(Lv)(x, y) = β v(x, y)− 1
2
σ2y2 vyy(x, y)− αy vy(x, y)− rx vx(x, y).

The optimal policy can be described in terms of two numbers 0 < z1 < z2 < 1/λ
which define the no-trade region (see [43], Theorem 11.2)

NT ,
{

(x, y) ∈ S; z1 <
y

x + y
< z2

}
.

If Yt/(Xt + Yt) < z1 one should buy stock in order to bring this ratio to the
boundary y/(x + y) = z1 of NT . If Yt/(Xt + Yt) > z2 one should sell stock
in order to bring this ratio to the other boundary y/(x + y) = z2 of NT . For
θp < 1 we must have 0 < z1 < θp < z2 < 1, so that NT is in the first quadrant.
For θp = 1, we have 0 < z1 < z2 = 1. In this paper we show that for θp > 1 and
sufficiently small λ, 1 < z1 < θp < z2, so NT is in the second quadrant.

Power utility functions lead to homotheticity of the value function: for γ > 0,

v(γx, γy) = γ1−p v(x, y), (x, y) ∈ S. (2.5)

This is because (C, L, M) ∈ A(x, y) ⇔ (γC, γL, γM) ∈ A(γx, γy). Conse-
quently, the problem reduces to that of a single variable. With T , (−1/λ, 1/λ),
we define

u(z) = v(1− z, z), z ∈ T . (2.6)

In other words, we make the change of variables z = y/(x+y), 1−z = x/(x+y),
which maps the solvency region S onto the interval T . Then

v(x, y) = (x + y)1−p u

(
y

x + y

)
, (x, y) ∈ S. (2.7)

The HJB equation corresponding to (2.4) for the function u(z) is

min
{
Du(z)− Ũ

(
(1− p) u(z)−z u′(z)

)
, λ(1− p)u(z) + (1− λz)u′(z),

λ(1− p)u(z)− (1 + λz)u′(z)
}

= 0,
(2.8)

where (see [43] p. 681, substituting λ for µ, 1 + λ for 1/(1− λ) and 1− p for p)

Du(z) =
(
pA(p) +

1
2
σ2p(1− p)(z − θp)2

)
u(z)

+ pσ2z(1− z)(z − θp)u′(z)− 1
2
σ2z2(1− z)2 u′′(z).

Because v(x, y) is continuous on S and of class C2 in S \{(x, y); y = 0} ([43],
Corollary 10.2 and Theorem 11.6), the function u is continuous on T , twice
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continuously differentiable on T except possibly at z = 1, and satisfies the HJB
equation (2.8). Moreover, [43] shows that

λ(1− p)u(z)− (1 + λz)u′(z) = 0, − 1
λ

< z ≤ z1, (2.9)

Du(z)− Ũ
(
(1− p)u(z)− zu′(z)

)
= 0, z1 ≤ z ≤ z2, (2.10)

λ(1− p)u(z) + (1− λz)u′(z) = 0, z2 ≤ z <
1
λ

. (2.11)

Since the function u is twice continuously differentiable except possibly at z = 1,
at each of z1 6= 1 and z2 6= 1 two of the above three equations hold. Moreover,
vyy is continuous at x = 0, and v(0, y) satisfies the HJB equation (2.4) ([43],
Corollary 10.3). It is also the case that (1−z)2u′′(z) is continuous for z ∈ T , and
limz→1(z − 1)2u′′(z) = 0 ([43], (A.5)). Thus, two of the above three equations
hold at each zi if zi = 1.

Equations (2.9) and (2.11) are consequences of the directional derivative of
v(x, y) being zero in the directions of transaction in the regions in which it is
optimal to buy stock and to sell stock, respectively. These equations imply

u(z) = u(z1)
(

1 + λz

1 + λz1

)1−p

, − 1
λ

< z ≤ z1, (2.12)

u(z) = u(z2)
(

1− λz

1− λz2

)1−p

, z2 ≤ z <
1
λ

. (2.13)

Lemma 2.1. Assume p > 0, p 6= 1. For a > 0 and b < a we have

Ũ(a− b) =
p

1− p
(a− b)

(
a−

1
p +

b

p
a−

1+p
p + O

(
b2

))

=
p

1− p
a−

1−p
p + b a−

1
p + O

(
b2

)
.

(2.14)

Proof. We write

Ũ(a− b) =
p

1− p

(
a− b

)− 1−p
p =

p

1− p
(a− b) (a− b)−

1
p .

A Taylor series expansion yields (a − b)−1/p = a−1/p + 1
p b a−(1+p)/p + O

(
b2

)
,

and we get the desired result.

3 Heuristic derivation by Taylor series

In this section we derive several terms of a power series expansion of the value
function by a heuristic method. One can get an idea on the size of the NT
wedge by the following argument. When transaction costs are introduced, it is
too expensive for an an agent to keep the proportion of capital in stock equal to
θp. Suppose the agent decides to instead keep the proportion inside an interval
centered at θp having width w. She then incurs an associated cost of transaction
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which is the product λ` of the transaction cost λ and the amount of transacting
(local time) ` accumulated by the state process at the boundaries of the NT
wedge. Suppose now that the no-transaction interval has width ρw for some
ρ > 0. One could multiply the stock volatility by ρ, which is equivalent to
scaling the Brownian motion by ρ, and then the local time on the boundary
of the NT wedge would also scale by ρ. If one subsequently scales time by
1/ρ2, local time is also scaled by 1/ρ2, and we have returned to the original
volatility. The net effect of these two scalings is to scale local time by 1/ρ. In
other words, the amount of transacting is inversely proportional to the width of
the NT wedge.

On the other hand, by permitting the state process to lie in a wedge rather
than at the optimal proportion θp, the agent loses utility due to displacement
from the optimal proportion. This is proportional to the square of the displace-
ment. To see that, one can consider the problem with zero transaction cost and
wealth process Vt = Xt + Yt given by

dVt = rVt dt + (α− r)θVt dt− cVt dt + σθVt dW (t),

where θ is a constant proportion of wealth maintained in the stock at all times
and c is a constant fraction of wealth being consumed at all times. It is conve-
nient to take θ to be of the form θp + ε and c to be of the form (1+ δ)A(p)Vt, so
that ε = 0 and δ = 0 provide the optimal solution to the zero transaction cost
problem. One can then compute

EV 1−p
t = V 1−p

0 exp
{ (

β −A(p)−B(ε)− (1− p)A(p)δ
)
t
}

,

where B(ε) = 1
2p(1 − p)σ2θ2

pε2. This yields expected discounted utility of con-
sumption

1
1− p

E
∫ ∞

0

e−βt
(
(1 + δ)A(p)Vt

)1−p dt

=
1

1− p
V 1−p

0 A−p(p)(1 + δ)1−p

(
1 +

B(ε)
A(p)

+ (1− p)δ
)−1

.

For fixed ε, this is maximized by taking δ = B
(
ε)/(pA(p)

)
, and that value of δ

results in expected utility

1
1− p

E
∫ ∞

0

e−βt
(
(1 + δ)A(p)Vt

)1−p dt

=
1

1− p
V 1−p

0 A−p(p)
(

1 +
1
2
(1− p)σ2θ2

pA−1(p)ε2
)−p

=
1

1− p
V 1−p

0 A−p(p)− p

2
V 1−p

0 σ2θ2
pA−1−p(p)ε2 + O(ε4).

The first term in the last expression is the value function when there is zero
transaction costs. The second order ε2 term is the loss due to displacement.
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Suppose an agent faced with transaction costs chooses a no-transaction
wedge whose width is order λq for some q > 0. The amount of transacting
will be of order λ−q and the marginal loss due to transacting will be of order
λ1−q. On the other hand, the marginal loss due to displacement will be of order
λ2q. The agent chooses q to balance these marginal losses, i.e., chooses q = 1

3

so that the width of the NT wedge is λ1/3 and the loss in the value function
due to the presence of transaction cost λ is of order λ2/3.

There is no explicit solution to (2.10) in the interval [z1, z2]. Guided by the
above discussion, we thus assume that in this region u(z) has an expansion in
powers of λ1/3, and we expect the coefficient of λ1/3 to be zero. In order to
work with this expansion, we need to also include the variable z, and we do that
using powers of (z − θp)1/3:

u(z) = γ0 − γ1 λ
1
3 − γ2 λ

2
3 − γ3 λ− γ40 λ

4
3 − γ41 (z − θp)λ

− γ42 (z − θp)2λ
2
3 − γ43 (z − θp)3λ

1
3 − γ44 (z − θp)4 + O

(
λ

5
3
)
.

(3.1)

We argued above that z − θp = O
(
λ1/3

)
for z ∈ NT . This assumption together

with (3.1) leads to the expansions

u′(z) = −γ41 λ− 2γ42 (z − θp)λ
2
3 − 3γ43 (z − θp)2λ

1
3

−4γ44 (z − θp)3 + O
(
λ

4
3
)
, (3.2)

u′′(z) = −2γ42 λ
2
3 − 6γ43 (z − θp)λ

1
3 − 12γ44 (z − θp)2 + O(λ). (3.3)

For z1 ≤ z ≤ z2 we have

Du(z) = pA(p)γ0 − pA(p)γ1 λ
1
3 − pA(p)γ2 λ

2
3 +

1
2
σ2p(1− p)(z − θp)2γ0 (3.4)

+σ2z2(1− z)2
(
γ42 λ

2
3 + 3γ43 (z − θp)λ

1
3 + 6γ44 (z − θp)2

)
+ O(λ).

Furthermore,

(1− p)u(z)− z u′(z) = (1− p)γ0 − (1− p)γ1λ
1
3 − (1− p)γ2λ

2
3 + O(λ). (3.5)

Setting a = (1−p)γ0 and b = (1−p)γ1 λ1/3 +O
(
λ2/3

)
in Lemma 2.1, we obtain

Ũ
(
(1−p) u(z)−z u′(z)

)
=

p

1− p

(
(1−p)γ0

)− 1−p
p +(1−p)γ1

(
(1−p)γ0

)− 1
p λ

1
3 +O

(
λ

2
3
)
.

(3.6)
Equating first the O(1) terms and then the O

(
λ1/3

)
terms in (3.4) and (3.6)

(see (2.10)), we conclude that

γ0 =
1

1− p
A−p(p), γ1 = 0.

Observe that γ0 is the value v(1− z, z) for zero transaction costs.
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Since γ1 is zero, we can now set b = (1 − p)γ2 λ2/3 + O(λ) in Lemma 2.1,
and obtain (after substituting for γ0)

Ũ
(
(1− p) u(z)− z u′(z)

)
=

p

1− p
A1−p(p) + (1− p)γ2A(p)λ

2
3 + O(λ). (3.7)

From (2.12) and (2.13) we observe that u′′(z1) = O
(
λ2

)
and u′′(z2) = O

(
λ2

)
.

From the continuity of (1− z)2u′′(z) we get from (3.4)

Du(zi) =
p

1− p
A1−p(p)−pA(p)γ2 λ

2
3 +

1
2
σ2p(zi−θp)2A−p(p)+O(λ), i = 1, 2,

where we have omitted the terms in (3.4) arising from u′′(zi) = O
(
λ2

)
. Setting

this equal to (3.7) at zi results in (zi − θp)2 = 1
4ν2 λ

2
3 + O(λ), with

ν =
√

8
pσ2

A1+p(p)γ2. (3.8)

We thus have

z1 − θp = −1
2
ν λ

1
3 + O

(
λ

2
3
)
, z2 − θp =

1
2
ν λ

1
3 + O

(
λ

2
3
)
. (3.9)

We may also equate the λ2/3 terms in (3.4) and (3.7) at z = θp, z = z1, and
z = z2, and substitute for zi − θp from (3.9), to obtain

A(p)γ2 = σ2 θ2
p(1− θp)2γ42,

A(p)γ2 =
1
8
σ2pA−p(p)ν2 + σ2 θ2

p(1− θp)2
(

γ42 − 3
2
γ43ν +

3
2
γ44ν

2

)
,

A(p)γ2 =
1
8
σ2pA−p(p)ν2 + σ2 θ2

p(1− θp)2
(

γ42 +
3
2
γ43ν +

3
2
γ44ν

2

)
,

which implies

γ42 =
A(p)γ2

σ2 θ2
p(1− θp)2

, γ43 = 0, γ44 = − pA−p(p)
12θ2

p(1− θp)2
. (3.10)

Finally, we observe from (2.12) and from (3.1) that

u′(z1) =
λ(1− p)
1 + λz1

u(z1) = λ(1− p)u(z1) + O
(
λ2

)
= A−p(p)λ + O

(
λ

5
3
)
,

and similarly for u′(z2). On the other hand, (3.2) and (3.9) imply that

u′(z1) = −γ41 λ + γ42ν λ− 3
4
γ43ν

2 λ +
1
2
γ44ν

3 λ + O
(
λ

4
3
)
,

u′(z2) = γ41 λ + γ42ν λ +
3
4
γ43ν

2 λ +
1
2
γ44ν

3 λ + O
(
λ

4
3
)
.
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It follows that

−γ41 + γ42ν − 3
4
γ43ν

2 +
1
2
γ44ν

3 = A−p(p) = γ41 + γ42ν +
3
4
γ43ν

2 +
1
2
γ44ν

3.

Since γ43 = 0 (see (3.10)), we conclude

γ42ν +
1
2
γ44ν

3 = A−p(p), γ41 = 0. (3.11)

We have thus written the value function as

u(z) =
1

1− p
A−p(p)− γ2 λ

2
3 + O(λ).

Furthermore, we can solve for γ2 and the width of the NT interval ν from
equations (3.8), (3.10), and (3.11) to obtain

γ2 =
(

9
32

pθ4
p(1− θp)4

) 1
3

A−1−p(p)σ2, ν =
(

12
p

θ2
p(1− θp)2

) 1
3

. (3.12)

4 Rigorous asymptotic expansion

Definition 4.1. Let w : T → R be continuous, taking values in (0,∞) if 0 <
p < 1 and taking values in (−∞, 0) if p > 1. Assume there are two points
0 < ζ1 < ζ2 < 1/λ such that

w(z) = w(ζ1)
(

1 + λz

1 + λζ1

)1−p

, − 1
λ

< z ≤ ζ1, (4.1)

w(z) = w(ζ2)
(

1− λz

1− λζ2

)1−p

, ζ2 ≤ z <
1
λ

. (4.2)

Assume further that w is of class C2 on (ζ1, ζ2) and the one-sided limits of w′′

exist at the endpoints of this interval. If

λ(1− p)w(z) + (1− λz)w′(z) ≥ 0, − 1
λ

< z < ζ2, (4.3)

Dw(z)− Ũ
(
(1− p)w(z)− zw′(z)

) ≥ 0, − 1
λ

< z <
1
λ

, (4.4)

λ(1− p)w(z)− (1 + λz)w′(z) ≥ 0, ζ1 < z <
1
λ

, (4.5)

we say (w, ζ1, ζ2) is a supersolution triple. If (4.1), (4.2) and the reverse of
inequality (4.4) for ζ1 < z < ζ2 hold, we say (w, ζ1, ζ2) is a subsolution triple.

If (w, ζ1, ζ2) is a supersolution (subsolution) triple, then

ϕ(x, y) , (x + y)1−pw
(
y/(x + y)

)
, (x, y) ∈ S (4.6)

is a supersolution (subsolution) of (2.4).
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Lemma 4.2. Assume p > 0, p 6= 1. If (w, ζ1, ζ2) is a supersolution (subsolution)
triple, then w(z) ≥ u(z) (w(z) ≤ u(z)) for z ∈ T .

Proof. For 0 < p < 1, this follows from [43], Comparison Theorem A.3. We give
the proof for p > 1.

Let (w, ζ1, ζ2) be a supersolution triple, and let ϕ be given by (4.6). In light
of (2.7), is suffices to prove that ϕ(x0, y0) ≥ v(x0, y0) for fixed but arbitrary
(x0, y0) ∈ S. Following the construction of Theorem 9.2 of [43], we let (C, L,M)
be an optimal policy for this initial condition, i.e., with (Xt, Yt) given by (2.1),
(2.2), we have (X(0), Y (0)) ∈ ∂NT if (x0, y0) /∈ NT , (Xt, Yt) ∈ NT for all
t ≥ 0, and

Lt =
∫ t

0

I{Ys/(Xs+Ys)=z1} dLs, Mt =
∫ t

0

I{Ys/(Xs+Ys)=z2}dMs,

Ct =
(
vx(Xt, Yt)

)−1/p
, t ≥ 0.

Then v(x0, y0) = E
∫∞
0

e−βtUp(Ct) dt.
The function ϕ is of class C2 in S except possibly on the lines y/(x+y) = ζi,

i = 1, 2. We can mollify ϕ to obtain a C2 function, apply Itô’s rule to this C2

function, and then pass to the limit. On the two lines where ϕ may not be C2,
(Xt, Yt) spends Lebesgue-measure zero time and we will obtain Itô’s rule for
ϕ(Xt, Yt). An exception would be if ζ2 = z2 = 1, because in this case (Xt, Yt)
remains on the y−axis once the y-axis is reached. A direct computation shows,
however, that ϕyy(x, y) is continuous there, even if ζ2 = z2 = 1, and hence we
will still obtain Itô’s rule. Therefore,
(
e−βtϕ(Xt, Yt)

)
(4.7)

= −e−βt
[
Lϕ(Xt, Yt) dt+Ctϕx(Xt, Yt)+

(
(1 + λ)ϕx(Xt, Yt)−ϕy(Xt, Yt)

)
dLt

+
(− (1− λ)ϕx(Xt, Yt) + ϕy(Xt, Yt)

)
dMt

]
+ e−βtϕy(Xt, Yt) σ dWt

≤ −e−βtUp(Ct) dt + e−βtϕy(Xt, Yt)σ dWt,

where we have used the supersolution property, the fact that Lϕ = Du, and the
fact (see(2.3)) that

Ũp

(
ϕx(Xt, Yt)

) ≥ Up(Ct)− Ctϕx(Xt, Yt). (4.8)

We want to integrate (4.7) and eventually argue that the expected value of the
Itô integral is zero. Define τn = inf{t ≥ 0; |Xt + Yt| ≤ 1/n}, to obtain

∫ n∧τn

0

e−βtUp(Ct) dt + e−β(n∧τn)ϕ(Xn∧τn , Yn∧τn) (4.9)

≤ ϕ(x0, y0) + σ

∫ n∧τn

0

e−βtϕy(Xt, Yt) dWt.

We can perform a similar analysis for the value function. The function v is C2

except on the y-axis. The x-axis is not in NT , which contains (Xt, Yt) for all
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t ≥ 0. At the y-axis, vyy is continuous ([43], Corollary 10.3). This permits us
to compute the differential of v(Xt, Yt), and similarly to (4.9) we obtain

∫ n∧τn

0

e−βtUp(Ct) dt + e−β(n∧τn)v(Xn∧τn
, Yn∧τn

) (4.10)

= v(x0, y0) + σ

∫ n∧τn

0

e−βtvy(Xt, Yt) dWt.

As n →∞, we have either τn →∞ or τn → τ0 , inf{t ≥ 0 : Xt = Yt = 0} < ∞.
On the set {limn→∞ τn = τ0 < ∞}, equation (4.10), the inequality Up ≤ 0
and the fact that v(0, 0) = −∞ imply

∫ τ0

0
e−βtvy(Xt, Yt) dWt = −∞. This is

impossible, because Itô integrals are either finite or have lim sup = − lim inf =
∞ (see [32], Chap. 3, Problem 4.11 and p. 232). We conclude that τn → ∞
almost surely. Taking expectations in (4.10) and letting n →∞, we obtain

lim
n→∞

Ee−β(n∧τn)v(Xn∧τn , Yn∧τn) = v(x0, y0)− E
∫ ∞

0

e−βtUp(Ct) dt = 0.

(4.11)
Because of (2.7), (4.6) and the boundedness of u and w for z ∈ NT , either

ϕ(x, y) = 0, or there are constants c1 and c2 such that

c1ϕ(x, y) ≤ v(x, y) ≤ c2ϕ(x, y) whenever z1 ≤ y

x + y
≤ z2.

From (4.11) we conclude that limn→∞ Ee−β(n∧τn)ϕ(Xn∧τn , Yn∧τn) = 0. Taking
expectations and the limit in (4.9), we have v(x0, y0) = E

∫∞
0

e−βtUp(Ct) dt ≤
ϕ(x0, y0), as desired.

Now let (w, ζ1, ζ2) be a subsolution triple. We show for fixed but arbitrary
(x0, y0) ∈ S that ϕ(x0, y0) ≤ v(x0, y0). This time we construct a (suboptimal)
policy (C,L, M) for which Y (0)/

(
X(0)+Y (0)

)
is either ζ1 or ζ2 if y0/(x0+y0) /∈

(ζ1, ζ2), (Xt, Yt) ∈ [ζ1, ζ2] for all t ≥ 0, and

Lt =
∫ t

0

I{Ys/(Xs+Ys)=ζ1} dLs, Mt =
∫ t

0

I{Ys/(Xs+Ys)=ζ2} dMs,

Ct =
(
ϕx(Xt, Yt)

)−1/p
, t ≥ 0.

For this policy, we have the reverse equality in (4.9).2 Using this inequality in
place of (4.10), we argue as before that limn→∞ τn = ∞ almost surely. ϕ ≤ 0,
(4.9) with the inequality reversed implies E

∫ n∧τn

0
e−βtUp(Ct) dt ≥ ϕ(x0, y0)

and letting n →∞, we obtain v(x0, y0) ≥ E
∫∞
0

e−βtUp(Ct) dt ≥ ϕ(x0, y0).

2We used the optimal policy for the supersolution argument to get equality in (4.10). For
the subsolution argument we get the appropriate inequality in (4.10) by using a suboptimal
policy. However, we need to pick trading policy such that the terms containing the integrals
dLt and dMt in (4.7) are zero, and consumption policy so that we get equality in (4.8).
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Theorem 4.3. Assume p > 0, p 6= 1 and A(p) > 0. Then the value function u
satisfies

u(θp) =
1

1− p
A−p(p)−

(
9
32

p θ4
p(1− θp)4

) 1
3

A−1−p(p)σ2 λ
2
3 + O(λ). (4.12)

Proof. We assume θp 6= 1. For θp = 1 see Remark 4.6.

Step 1: Choice of constants and variables

We recall the constants γ2 and ν of (3.12). Set ξ =
√

2
3 (1− p)γ2Ap(p) + B,

where B is a constant chosen to make the expression under the square root
positive. We next define

h(δ) =
3
2

δ2λ
2
3 − 1

ν2
· δ4 +

3
2
B δ2λ

2
3

and choose a positive constant M satisfying

M > θpA
−p(p) +

1
4
σ2pν2ξ2A−p−1(p). (4.13)

We define functions

f±1 (δ) = νλ
1
3 − (1− p)νγ2A

p(p)λ± (1− p)νMAp(p) λ
4
3 − (1− p)h(−δ)λ

1
3

+
(
λ−

2
3 + (θp − δ)λ

1
3

)
h′(−δ), (4.14)

f±2 (δ) = ν λ
1
3 − (1− p)νγ2A

p(p)λ± (1− p)νMAp(p) λ
4
3 − (1− p)h(δ) λ

1
3

+
(
−λ−

2
3 + (θp + δ)λ

1
3

)
h′(δ). (4.15)

It is shown in Appendix A that there are numbers

δ±1 =
1
2
νλ

1
3 (1− ξλ

1
3 ) + o

(
λ

2
3
)
, δ±2 =

1
2
νλ

1
3 (1− ξλ

1
3 ) + o

(
λ

2
3
)

(4.16)

satisfying f±i (δ±i ) = 0, i = 1, 2.

Step 2: Construction of super/subsolutions.
Choose λ > 0 small enough that ζ±1 , θp − δ±1 and ζ±2 , θp + δ±2 all lie in

(0, 1/λ). (We have θp > 0 since α > r.) Define

w±(z) =





(
A−p(p)

1−p − γ2 λ
2
3 ±Mλ− A−p(p)

ν h(ζ±1 − θp)
)(

1+λz
1+λζ±1

)1−p

, − 1
λ ≤ z ≤ ζ±1 ,

1
1−pA−p(p)− γ2 λ

2
3 ±Mλ− A−p(p)

ν h(z − θp), ζ±1 ≤ z ≤ ζ±2 ,(
A−p(p)

1−p − γ2 λ
2
3 ±Mλ− A−p(p)

ν h(ζ±2 − θp)
)(

1−λz
1−λζ±2

)1−p

, ζ±2 ≤ z ≤ 1
λ .

The reader can verify that if M were zero, then in the region [ζ±1 , ζ±2 ] the formula
for w±(z) agrees with the power series expansion

γ0 − γ2λ
2
3 − γ42(z−θp)2λ

2
3 − γ44(z−θp)4,
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where the coefficients γ0, γ2, γ42, and γ44 are those worked out in the pre-
vious section. The term ±Mλ in the definition of w± will be used to create
supersolution and subsolution triples. We have the derivative formula

w′±(z) =





λ
1+λz (1− p)w±(z), − 1

λ < z ≤ ζ±1 ,

−ν−1A−p(p)h′(z − θp), ζ±1 ≤ z ≤ ζ±2 ,

− λ
1−λz (1− p)w±(z), ζ±2 ≤ z < 1

λ .

The equations f±1 (δ1) = 0 and f±2 (δ2) = 0 guarantee that w′± is defined and
continuous at ζ±1 and ζ±2 . We also have

w′′±(z) =





− λ2

(1+λz)2 p(1− p)w±(z), − 1
λ < z < ζ±1 ,

−ν−1A−p(p)h′′(z − θp), ζ±1 < z < ζ±2 ,

− λ2

(1−λz)2 p(1− p)w±(z), ζ±2 < z < 1
λ .

The function w±(z) is C2 except at ζ±1 and ζ±2 , and at these two points, the
one-sided second derivatives exist and equal the respective one-sided limits of
the second derivatives.

Step 3: Verification that (w−, ζ−1 , ζ−2 ) is a subsolution triple.
It suffices to verify

Dw−(z)− Ũ
(
(1− p)w−(z)− zw′−(z)

) ≤ 0, ζ−1 < z < ζ−2 . (4.17)

To do this, we simultaneously work with both w− and w+. We thereby develop
an inequality for w+ needed in the subsequent supersolution verification. We
use the facts that z− θp = O

(
λ1/3

)
, so h(z− θp) = O

(
λ4/3

)
, h′(z− θp) = O(λ).

For ζ±1 < z < ζ±2 we have (1− p)w±(z)− zw′±(z) = a− b, where a = A−p(p)
and b = (1−p)γ2λ

2/3∓(1−p)Mλ−A−p(p)ν−1zh′(z−θp)+O
(
λ4/3

)
. Lemma 2.1

implies

Ũ
(
(1− p)w±(z)− zw′±(z)

)
(4.18)

=
p

1− p
A1−p(p) + A(p)

[
(1− p)γ2λ

2
3 ∓ (1− p)Mλ− A−p(p)

ν
zh′(z − θp)

]

+O
(
λ

4
3
)

= pA(p)w(z) + γ2A(p)λ
2
3 ∓Mλ− A1−p(p)

ν
zh′(z − θp) + O

(
λ

4
3
)
.

Therefore,

Dw±(z)− Ũ
(
(1− p)w±(z)− zw′±(z)

)

=
1
2
σ2p(1− p)(z − θp)2w±(z)− 1

2
σ2z2(1− z)2w′′±(z)

−γ2A(p)λ
2
3 ±Mλ +

1
ν

A1−p(p)zh′(z − θp) + O
(
λ

4
3
)
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=
1
2
σ2pA−p(p)(z − θp)2 +

1
2ν

σ2z2(1− z)2A−p(p)h′′(z − θp)

−γ2A(p)λ
2
3 ±Mλ +

1
ν

A1−p(p)zh′(z − θp) + O
(
λ

4
3
)
.

Writing z = θp + (z − θp) and 1− z = 1− θp − (z − θp), we derive the relation

z2(1− z)2 = θ2
p(1− θp)2 + 2θp(1− θp)(1− 2θp)(z − θp) + O

(
λ

2
3
)
.

Using this and the formulas h′(δ) = 3δλ2/3−4δ3/ν2 +3Bδλ2/3, h′′(δ) = 3λ2/3−
12δ2/ν2 + 3Bλ2/3, we obtain

Dw±(z)− Ũ
(
(1− p)w±(z)− zw′±(z)

)

=
[
1
2
σ2pA−p(p)− 6

ν3
σ2θ2

p(1− θp)2A−p(p)
]

(z − θp)2

+
[

3
2ν

σ2θ2
p(1− θp)2A−p(p)− γ2A(p)

]
λ

2
3

+σ2θp(1− θp)(1− 2θp)A−p(p)

[
3(z − θp)λ

2
3

ν
− 12(z − θp)3

ν3

]

+θpA
−p(p)

[
3(z − θp)λ

2
3

ν
− 4(z − θp)3

ν3

]
±Mλ + O

(
λ

4
3
)
.

The definitions of ν and γ2 imply that the first two terms on the right-hand side
are zero. Because

z − θp

ν
=

1
2
λ

1
3 + O

(
λ

2
3
)
,

the third term is O
(
λ4/3

)
, and we can simplify the fourth term to obtain

Dw±(z)− Ũ
(
(1− p)w±(z)− zw′±(z)

)
= θpA

−p(p)λ±Mλ + O
(
λ

4
3
)

(4.19)

for z±1 < z < z±2 . From (4.13) we have (4.17) for all sufficiently small λ > 0.
This completes the verification that (w−, ζ−1 , ζ−2 ) is a subsolution triple.

Step 4: Verification that (w+, ζ+
1 , ζ+

2 ) is a supersolution triple
Step 4a: Interval (−1/λ, ζ+

1 ).
We must show that that (4.3) and (4.4) hold in this interval. Since (1 −

p)w+(z) > 0 for sufficiently small λ > 0, so is w′+(z), and thus (4.3) holds.
It remains to verify that for sufficiently small λ

Dw+(z)− Ũ
(
(1− p)w+(z)− zw′+(z)

) ≥ 0, − 1
λ

< z < ζ+
1 . (4.20)
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In this interval,

(1− p)w+(z)− zw′+(z) =
1− p

1 + λz
w+(z)

=
1

1 + λζ+
1

(
1 + λz+

1

1 + λz

)p (
A−p(p)− (1− p)γ2λ

2
3

+ (1− p)Mλ− 1
ν

(1− p)A−p(p)h(ζ+
1 − θp)

)
.

Using the first equality in Lemma 2.1 and the equality Ũ(αc̃) = α−(1−p)/p Ũ(c̃),
we get

Ũ
(
(1− p)w+(z)− zw′+(z)

)

= (1 + λz+
1 )

1−p
p

(
1 + λz

1 + λζ+
1

)1−p
p

1− p

×
(

A−p(p)− (1− p)γ2λ
2
3 + (1− p)Mλ− 1− p

ν
A−p(p)h(ζ+

1 − θp)
)

×
(

A(p) +
1− p

p
γ2A

p+1(p)λ
2
3 − 1− p

p
MAp+1(p)λ + O

(
λ

4
3
))

= (1 + λζ+
1 )

1−p
p w+(z)

×
(
pA(p) + (1− p)γ2A

p+1(p)λ
2
3 − (1− p)MAp+1(p)λ + O

(
λ

4
3
))

.

But (1 + λζ+
1 )(1−p)/p = 1 + 1−p

p λζ+
1 + O

(
λ2

)
= 1 + 1−p

p λθp + O
(
λ4/3

)
, and thus

Ũ
(
(1− p)w+(z)− zw′+(z)

)

= w+(z)
(
pA(p) + (1− p)γ2A

p+1(p)λ
2
3 − (1− p)MAp+1(p)λ

+(1− p)θpA(p)λ + O
(
λ

4
3
))

. (4.21)

It is easy to verify that for λ > 0 sufficiently small, the function k(z) ,
(z − θp) + λz(1 − z)/(1 + λz) attains its maximum over (−1/λ, ζ+

1 ] at ζ+
1 and

k(ζ+
1 ) < 0. Therefore

k2(z) ≥ k2(ζ+
1 ) = (δ+

1 )2 + δ+
1 O(λ) =

1
4
ν2λ

2
3 − 1

2
ν2ξλ + o

(
λ
)
, − 1

λ
< z ≤ ζ+

1 .

It follows that for sufficiently small λ > 0

Dw+(z)− Ũ
(
(1− p)w+(z)− zw′+(z)

)

=
{

1
2
p σ2

(
(z − θp) + z(1− z)

λ

1 + λz

)2

− γ2A
p+1(p) λ

2
3 + MAp+1(p)λ

− θpA(p)λ + O
(
λ

4
3
)}

(1− p)w+(z)
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≥
{

1
2
p σ2k(ζ+

1 )− γ2A
p+1(p)λ

2
3 + MAp+1(p)λ− θpA(p)λ + O

(
λ

4
3
)}

× (1− p)w+(z)

=
{(

1
8
pσ2ν2 − γ2A

p+1(p)
)

λ
2
3 +

(
MAp+1(p)− 1

4
pσ2ν2ξ − θpA(p)

)
λ

+ o(λ)
}

(1− p)w+(z)

=
{(

MAp+1(p)− 1
4
pσ2ν2ξ − θpA(p)

)
λ + o(λ)

}
(1− p)w+(z) ≥ 0,

where we have used (4.13) in the last step.

Step 4b: Interval [ζ+
2 , 1/λ). This is analogous to Step 4a.

Step 4c: Interval (ζ+
1 , ζ+

2 ). From (4.19) and (4.13) we have

Dw+(z)− Ũ
(
(1− p)w+(z)− zw+(z)

)
=

(
θpA

−p(p) + M
)
λ + O

(
λ

4
3
) ≥ 0.

We must also show that

g1(z) , λ(1− p)w+(z)− (1 + λz)w′+(z) ≥ 0, ζ+
1 < z < ζ+

2 . (4.22)

For z ∈ (ζ+
1 , ζ+

2 ), we have z − θp = O
(
λ1/3

)
. Using this fact, we compute

g1(z) = A−p(p)λ− (1− p)γ2λ
5
3 + (1− p)Mλ2

−3(1− p)
2ν

A−p(p)(z − θp)2λ
5
3 +

1− p

ν3
A−p(p)(z − θp)4λ

+
3(1 + λz)

ν
A−p(p)(z − θp)λ

2
3 − 4(1 + λz)

ν3
A−p(p)(z − θp)3,

g′1(z) =
12
ν

A−p(p)λ
2
3

[
1
4
−

(
z − θp

νλ
1
3

)2

+ O(λ)

]
.

We know that g1(ζ+
1 ) = 0 and thus, to prove (4.22), it suffices to show that g′1

is positive on [ζ+
1 , ζ+

2 ]. Because −(z− θp)2 is a concave function of z, it suffices
to check the endpoints. We have for i = 1, 2 that

(
ζ+
i − θp

νλ
1
3

)2

=
(

1
2
(1− ξλ

1
3 ) + o

(
λ

1
3
))2

=
1
4
− 1

2
ξλ

1
3 + o

(
λ

1
3
)
.

Therefore,

g′1(ζ
+
i ) =

12
ν

A−p(p)λ
2
3

[
1
2
ξλ

1
3 + o

(
λ

1
3
)]

> 0

for sufficiently small λ > 0. The proof that

g2(z) = λ(1− p)w+(z) + (1− λz)w′+(z)
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is positive for z ∈ [ζ+
1 , ζ+

2 ] is analogous. This completes the proof that (w+, ζ+
1 , ζ+

2 )
is a supersolution triple.

Conclusion:
We note that w±(θp) = 1

1−pA−p(p)−γ2 λ
2
3 ±Mλ, and so Lemma 4.2 implies

1
1− p

A−p(p)− γ2λ
2
3 −Mλ ≤ u(θp) ≤ 1

1− p
A−p(p)− γ2λ

2
3 + Mλ.

Corollary 4.4. Assume p > 0, p 6= 1 and A(p) > 0. For fixed z ∈ T , the value
function satisfies

u(z) =
1

1− p
A−p(p)−

( 9
32

p θ4
p(1− θp)4

) 1
3
A−1−p(p)σ2 λ

2
3 + O(λ). (4.23)

Proof. In the proof of Theorem 4.3 we constructed a supersolution w+ and a
subsolution w− such that w+(z)−w−(z) = O(λ), w±(z) = w±(θ)+O(λ) for fixed
z ∈ T . It follows that u(z) = w±(z)+O(λ) = w±(θ)+O(λ) = u(θ)+O(λ).

Theorem 4.5. Assume p > 0, p 6= 1, A(p) > 0 and θp 6= 1. Then with ν given
by (3.12), we have

z1 = θp − 1
2
νλ

1
3 + O

(
λ

2
3
)
, z2 = θp +

1
2
νλ

1
3 + O

(
λ

2
3
)
.

Proof. The value function u is concave, so u′ is monotone. By taking the deriva-
tive of u in the BS and SS regions (see (2.12) and (2.13)) we see that

u′(z) = O(λ) ∀z ∈ [z1, z2]. (4.24)

It follows that for z = z1 and z = z2, and hence for all z ∈ [z1, z2],

Ũ
(
(1− p)u(z)− zu′(z)

)
=

p

1− p
A1−p(p) + (1− p)γ2A(p)λ

2
3 + O(λ).

We also know that u′′(z) is continuous for z ∈ T \{1}. From equations (2.12)
and (2.13) it follows that u′′(zi) = O

(
λ2

)
for zi 6= 1. We can thus write

Du(zi) =
(
pA(p) +

1
2
σ2p(1− p)(zi − θp)2

)
u(zi) + O(λ)

=
p

1− p
A1−p(p)− pγ2A(p)λ

2
3 +

1
2
σ2pA−p(p)(zi − θp)2 + O(λ).

If zi = 1, the term (1− zi)2u′′(zi) is set equal to zero (see [43], equation (A.5)),
and the above equation still holds. In order to satisfy Equation (2.8) we must
have

0 = Du(zi)− Ũ
(
(1− p)u(zi)− ziu

′(zi)
)

= −γ2A(p)λ
2
3 +

1
2
σ2pA−p(p)(zi − θp)2 + O(λ).

(4.25)
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It follows that

zi = θp ± λ
1
3

√
2

pσ2
Ap+1(p)γ2 + O

(
λ

2
3
)

= θp ±
(

3
2p

θ2
p(1− θp)2

) 1
3

λ
1
3 + O

(
λ

2
3
)
,

where the − sign is for z1 and the + sign is for z2.

Remark 4.6. The proof of Theorem 4.3 is valid so long as θp 6= 1. The case of
θp = 1 can be considered a singular case for which the parameter ν appearing
in a denominator in the definition of h(δ) is zero. The intuition is that if the
optimal proportion in the risky asset is 100% of wealth, then the investor does
not incur any transaction costs due to adjusting the position size, as soon as
the agent’s position equals the optimum of 100% in stock. However, in order to
consume the agent must transfer money from stock to money market and pay
the transaction cost. We could regard this transaction cost as a consumption
tax. It follows that the loss in value function is of order of λ rather than λ2/3.
In [43], Theorems 11.2 and 11.6 show that in this case z2 = θp = 1 > z1 > 0,
and [43], Corollary 9.10 asserts that

v(x, y) =
1

1− p
A−p(p)

(
x + (1− λ)y

)1−p
, (x, y) ∈ S, x ≤ 0,

or equivalently,

u(z) = v(1− z, z) =
1

1− p
A−p(p)(1− λz)1−p, 1 ≤ z <

1
λ

.

We see then that

u(θp) =
1

1− p
A−p(p)−A−p(p)λ + O

(
λ2

)
, (4.26)

which is consistent with (4.12).
The proof of Theorem 4.5 is valid for θp = 1, except the last step. When

θp = 1, we have γ2 = 0 and (4.25) reduces to

z1 − θp = z1 − 1 = O
(
λ

1
2
)
.

Remark 4.7. The optimal consumption policy c is given by v
−1/p
x (see (2.4)

and (2.3)). Since v(x, y) = (x + y)1−pu
(
y/(x + y)

)
(see (2.7)), we have

vx(x, y) = (1− p)(x + y)−pu

(
y

x + y

)
− y(x + y)−1−pu′

(
y

x + y

)

= (1− p)(x + y)−pu

(
y

x + y

)
+ O(λ),

where we have used (4.24). Therefore, Theorem 4.3 implies that the optimal
consumption in feedback form is

c =
(
A−p(p)−(1−p)γ2λ

2
3

)− 1
p

(x+y)+O(λ) =
(
A(p)+

1− p

p
γ2λ

2
3

)
(x+y)+O(λ).
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Observe that for sufficiently small λ the existence of transaction costs increases
the size of consumption for p ∈ (0, 1), while the consumption is decreased for
p > 1. The intuition explaining this observation is related to the fact that the
index of intertemporal substitution, which is equal to 1/p, is high for small p.
An agent with index of intertemporal substitution higher than 1 will optimally
avoid some transaction costs resulting from trading by consuming faster.

Remark 4.8. There is considerable evidence that

u(θp) =
1

1− p
A−p(p)− γ2λ

2
3 − θpA

−p(p)λ + O
(
λ

4
3
)
. (4.27)

We have just seen in (4.26) that this is the case when θp = 1 (and consequently
γ2 = 0). In the proof of Theorem 4.3, any choice of M > θpA

−p(p) gives us a
subsolution of the form

w−(θp) =
1

1− p
A−p(p)− γ2λ

2
3 −Mλ + O

(
λ

4
3
)
. (4.28)

(The second term on the right-hand side of (4.13) is needed only for the super-
solution argument.) Finally, the coefficient −θpA

−p(p) on λ can be obtained by
a tedious heuristic analysis along the lines of Section 3.

In Remark 4.6 we introduced the concept of consumption tax as an interpre-
tation of the transaction cost an agent must pay in order to first move capital
from stock to money market before consuming it. In that remark, the agent was
ideally 100% invested in stock. If instead the agent seeks to hold a proportion
θp 6= 1 in stock, then consuming proportionally from stock and money market,
the agent would pay a consumption tax λθp times the total consumption. To
highest order, the optimal consumption level is thus (1− λθp) of what it would
be if there were no transaction cost, and this multiplies the value function by

(1− λθp)1−p = 1− (1− p)θp λ + O(λ2).

The value function for zero transaction cost when wealth is 1 is A−p(p)/(1− p),
and so after this multiplication, the value function has been reduced by

θpA
−p(p)λ,

which is the order λ term we see in (4.27). We thus expect the value function
for the problem with transaction cost λ to be reduced from the zero-transaction
cost value function A−p(p)/(1− p) by at least θpA

−p(p)λ, this reduction being
due solely to the cost of moving capital from stock to money market in order to
consume. There is also a cost of trading to stay in the NT wedge, which reduces
the value function by γ2λ

2
3 , but cannot further reduce the value function by an

order λ term because then the value function would fall below the lower bound
(4.28).

Under the assumption that (4.27) holds, one can improve the calculations in
Theorem 4.5. We already have from Theorem 4.5 and its proof that zi − θp =
O(λ1/3) and that u′(z) = O(λ) for z ∈ [z1, z2]. The mean-value theorem gives

u(zi) = u(θp) + O
(
λ

4
3
)
,
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and

(1− p)u(z1)− z1u
′(z1) =

(1− p)u(z1)
1 + λz1

= A−p(p)− (1− p)γ2 λ
2
3 − (2− p)θpA

−p(p)λ + O
(
λ

4
3
)
,

(1− p)u(z2)− z2u
′(z2) =

(1− p)u(z2)
1− λz2

= A−p(p)− (1− p)γ2 λ
2
3 + pθpA

−p(p)λ + O
(
λ

4
3
)
.

Using Lemma 2.1, we obtain

Ũ
(
(1− p)u(z2)− z2u

′(z2)
)

=
p

1− p
A1−p(p) + (1− p)A(p)γ2 λ

2
3 + (2− p)θpA

1−p(p)λ + O
(
λ

4
3
)
,

Ũ
(
(1− p)u(z1)− z1u

′(z1)
)

=
p

1− p
A1−p(p) + (1− p)A(p)γ2 λ

2
3 − pθpA

1−p(p)λ + O
(
λ

4
3
)
.

We write for z1 and z2 similarly as in Theorem 4.5

Du(zi) =
p

1− p
A1−p(p)−pA(p)γ2 λ

2
3−pθpA

1−p(p)λ+
1
2
σ2pA−p(p)(zi−θp)2+O

(
λ

4
3
)
.

From Du(zi) = Ũ
(
(1− p)u(zi)− ziu

′(zi)
)
, we now see that

(z1 − θp)2 =
2

pσ2

(
A1+p(p)γ2 λ

2
3 + 2θpA(p)λ

)
+ O

(
λ

4
3
)
, (4.29)

(z2 − θp)2 =
2

pσ2
A1+p(p)γ2 λ

2
3 + O

(
λ

4
3
)
, (4.30)

which implies

z1 − θp = −1
2
ν λ

1
3 − 4θpA(p)

σ2p ν
λ

2
3 + O(λ),

z2 − θp =
1
2
ν λ

1
3 + O(λ).

This suggests that the optimal policy is to keep a wider wedge on the right side of
the Merton proportion θp. This extra width makes sense because consumption
reduces the money market position.

We can do the same calculation for θp = 1, in which case γ2 = ν = 0. Taking
the square roots in (4.29), (4.30), we now have

z1 − θp = z1 − 1 = −
√

4θpA(p)
σ2p

λ
1
2 + O

(
λ

5
6
)
, z2 − θp = z2 − 1 = O(λ).

In fact, when θp = 1, we have z2 = θp.
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Remark 4.9. In the key formulas derived in this paper, the transaction cost
parameter λ appears in combination with Γ , θp(1−θp). According to Theorem
4.3, the highest order loss in the value function due to transaction costs is

(
9p

32

) 1
3

A−1−pσ2
(
Γ2λ

) 2
3 (4.31)

From Theorem 4.5, we see that

zi − θp = (−1)i

(
3
2p

) 1
3 (

Γ2λ
) 1

3 . (4.32)

One way to see the intrinsic nature of the quantity Γ2λ is to define the proportion
of capital in stock, θt = Yt/(Xt + Yt), and apply Itô’s formula when (Xt, Yt) is
generated by the optimal triple (C, L, M), for which L and M are continuous,
to derive the equation

dθt = θt(1− θt)
dSt

St
− rθt(1− θt) dt− σ2θ2

t (1− θt) dt +
θtCt

Xt + Yt
dt

+
λθt + 1
Xt + Yt

dLt +
λθt − 1
Xt + Yt

dMt.

We see that the response of θt to relative changes in the stock price is θt(1−θt).
Our desire is to keep θt in the interval [z1, z2]. If the leading term in the above
equation were scaled to be ρθt(1 − θt)dSt

St
, then because the dt terms have a

lower order effect on the dynamics, this would be approximately equivalent to
scaling time by ρ2, and so the local time of θt at the endpoints of [z1, z2] would
approximately be scaled by ρ2. If at the same time the transaction cost were
replaced by λ/ρ2, then the total amount of transacting would be approximately
unaffected. The quantity θ2

t (1 − θt)2λ is invariant under this scaling. Because
the optimal policy keeps θt near θp, the quantity Γ2λ appears to be intrinsic.

When replicating an option by trading, the position held by the hedging
portfolio, denominated in shares of stock, is call the delta of the option, and the
sensitivity of the delta to changes in the stock price is the gamma. We have
here a similar situation, except that θt is the proportion of capital held in stock,
rather than the number of shares of stock, and θt(1 − θt) is the sensitivity of
this proportion to relative changes in the stock price.

It is interesting to note that the quantity Γ2λ also plays a fundamental role
in the formal asymptotic expansions of Whalley and Wilmott [49]. In fact, even

the constants
(

9
32

) 1
3 and

(
3
2

) 1
3 in (4.31) and (4.32) appear in [49], the first at

the end of Section 3.3 and the second in equation (3.10).
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A Width of the NT interval

We shall only consider δ of the form O
(
λ1/3

)
. For such δ, we may write the

terms of order λ and lower in f±1 (δ) of (4.14) as

f±1 (δ)

= ν λ
1
3 − (1− p)γ2νAp(p)λ− h′(δ)λ−

2
3 − θph

′(δ) λ
1
3 + h′(δ) δλ

1
3 + O

(
λ

4
3
)

= ν λ
1
3 − (1− p)γ2νAp(p)λ− 3δ +

4
ν2
· δ3

λ
2
3
− 3Bδλ

2
3 + O

(
λ

4
3
)
.

Consider δ0 , 1
2νλ1/3

(
1− ξ0λ

1/3
)
. Then

f±1 (δ0) = ν λ
1
3 − (1− p)γ2νAp(p) λ− 3

2
ν λ

1
3 +

3
2
νξ0 λ

2
3

+
1
2
ν λ

1
3

(
1− 3ξ0λ

1
3 + 3ξ2

0λ
2
3

)
− 3

2
Bν λ + O

(
λ

4
3
)

= ν
(3

2
ξ2
0 − (1− p)γ2A

p(p)− 3
2
B

)
λ + O

(
λ

4
3
)
.

With ξ =
√

2
3 (1− p)γ2Ap(p) + B > 0, we take ξ0 =

√
ξ2 + η, where |η| <

ξ2. Then f±1 (δ0) = 3
2νη λ + O

(
λ

4
3
)
. Thus, for η > 0 we have f±1 (δ0) > 0 for

sufficiently small λ > 0, and for η < 0 we have f±1 (δ0) < 0 for sufficiently small
λ > 0. Therefore, for every η ∈ (

0, ξ2
)

and sufficiently small λ > 0, there exists

δ±1 ∈
(

1
2
ν λ

1
3

(
1− λ

1
3
√

ξ2 − η
)
,
1
2
ν λ

1
3

(
1− λ

1
3
√

ξ2 + η
))

satisfying f±1 (δ±1 ) = 0. In other words, δ±1 = 1
2νλ

1
3

(
1 − ξ λ

1
3

)
+ o

(
λ

2
3
)
. The

proof of the existence of δ±2 is analogous.
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