Rank-one Generated Spectral Cones Defined by Two Homogeneous Linear Matrix Inequalities

C.J. Argue

Joint work with Fatma Kılınç-Karzan

October 22, 2017

INFORMS Annual Meeting
Houston, Texas
Nonconvex quadratic program

\[
\max_{x} \, x^\top Qx \\
\text{s.t. } x^\top M_i x \geq 0, \ i = 1, \ldots, k
\]
Introduction – Motivation

Nonconvex quadratic program

\[
\begin{align*}
\max_{x} & \quad x^\top Q x \\
\text{s.t.} & \quad x^\top M_i x \geq 0, \ i = 1, \ldots, k
\end{align*}
\]

We have \(x^\top A x = \text{Tr}(x^\top A x) = \text{Tr}(Axx^\top) = \langle A, xx^\top \rangle \).

\[
\begin{align*}
\max_{x} & \quad \langle Q, xx^\top \rangle \\
\text{s.t.} & \quad \langle M_i, xx^\top \rangle \geq 0, \ i = 1, \ldots, k
\end{align*}
\]
Nonconvex quadratic program

$$\max_x x^\top Q x$$

s.t. $$x^\top M_i x \geq 0, \ i = 1, \ldots, k$$

We have $$x^\top A x = \text{Tr}(x^\top A x) = \text{Tr}(A xx^\top) = \langle A, xx^\top \rangle.$$

$$\max_x \langle Q, xx^\top \rangle$$

s.t. $$\langle M_i, xx^\top \rangle \geq 0, \ i = 1, \ldots, k$$

Can write $$X = xx^\top$$ if and only if $$X \succeq 0$$ and $$\text{rank}(X) = 1.$$

$$\max_X \langle Q, X \rangle$$

s.t. $$\langle M_i, X \rangle \geq 0, \ i = 1, \ldots, k$$

$$X \succeq 0$$

$$\text{rank}(X) = 1$$
\[
\max_X \langle Q, X \rangle \\
\text{s.t. } \langle M_i, X \rangle \geq 0, \ i = 1, \ldots, k \\
X \succeq 0 \\
\text{rank}(X) = 1
\]

The condition \(\text{rank}(X) = 1\) is nonconvex.
The condition \(\text{rank}(X) = 1 \) is nonconvex. Convex (semidefinite program) relaxation:

\[
\begin{align*}
\max_X & \quad \langle Q, X \rangle \\
\text{s.t.} & \quad \langle M_i, X \rangle \geq 0, \ i = 1, \ldots, k \\
& \quad X \succeq 0 \\
& \quad \text{rank}(X) = 1
\end{align*}
\]
Introduction – Motivation

- When is this relaxation tight?
Introduction – Motivation

- When is this relaxation tight?
- Feasible set perspective.

Tight for every objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).

Analogous to integral polyhedra/total unimodularity.

Burer '15, Hildebrand '16, Blekherman et al. '16.
Introduction – Motivation

- When is this relaxation tight?
- Feasible set perspective.
- Tight for **every** objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).

Analogous to integral polyhedra/total unimodularity.

Burer '15, Hildebrand '16, Blekherman et al. '16.
Introduction – Motivation

- When is this relaxation tight?
- Feasible set perspective.
- Tight for **every** objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).
- Analogous to integral polyhedra/total unimodularity.
Introduction – Motivation

- When is this relaxation tight?
- Feasible set perspective.
- Tight for **every** objective function if and only if every extreme ray is rank one (Rank-One Generated/ROG).
- Analogous to integral polyhedra/total unimodularity.
- Burer ’15, Hildebrand ’16, Blekherman et al. ’16.
Introduction – Our Question

Question
Let M_1, M_2 be $n \times n$ symmetric matrices.

When is
\[S := \{ Y \succeq 0 : \langle Y, M_1 \rangle \geq 0, \langle Y, M_2 \rangle \geq 0 \} \]

an ROG cone?
Two geometric perspectives.
Each perspective gives a sufficient condition for \mathcal{S} to be ROG. Together these conditions are also necessary.
Two geometric perspectives.
Each perspective gives a sufficient condition for \mathcal{S} to be ROG. Together these conditions are also necessary.

- $\langle M, Y \rangle = 0$ as a hyperplane in $\mathbb{S}^n := \{n \times n$ symmetric matrices$\}$.
Two geometric perspectives.
Each perspective gives a sufficient condition for S to be ROG. Together these conditions are also necessary.

- $\langle M, Y \rangle = 0$ as a hyperplane in $\mathbb{S}^n := \{n \times n \text{ symmetric matrices}\}$.
- $\langle M, xx^\top \rangle = x^\top M_1 x$ as a quadratic form in \mathbb{R}^n.

\[\langle M, xx^\top \rangle = x^\top M_1 x \] as a quadratic form in \mathbb{R}^n.

A set/cone is ROG if all its extreme points/rays have rank 1.
SDP relaxations of quadratic programs are tight for every objective function if and only if the feasible set is ROG.
Consider $\mathcal{S} := \{Y \succeq 0 : \langle Y, M_1 \rangle \geq 0, \langle Y, M_2 \rangle \geq 0\}$ (two LMI).
Two geometric perspectives – \mathbb{S}^n and \mathbb{R}^n.
Geometry of \mathbb{S}^n_+ – Rank

Consider $\mathbb{S}^n_+ := \{\text{positive semidefinite } n \times n \text{ matrices}\} \subseteq \mathbb{S}^n$.

- Red ray: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- Green ray: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Rank 1 \leftrightarrow extreme.
- Rank $\geq 2 \leftrightarrow$ not extreme.
Fact [Ye, Zhang ’03]

\[S := \{ Y \succeq 0 : \langle M, Y \rangle \geq 0 \} \text{ is ROG for any } M \in S^3. \]
Geometry of S^n_+ – Two LMIs

Interacting inside S^n_+.

Non-interacting inside S^n_+.

ROG spectral cones defined by two LMIs
If M_1 and M_2 are non-interacting, then every extreme ray of

$$S = \{ Y \succeq 0 : \langle Y, M_1 \rangle \geq 0, \langle Y, M_2 \rangle \geq 0 \}$$

is an extreme ray of either

$$\{ Y \succeq 0 : \langle Y, M_1 \rangle \geq 0 \}$$

or

$$\{ Y \succeq 0 : \langle Y, M_2 \rangle \geq 0 \}.$$
If M_1 and M_2 are non-interacting, then every extreme ray of

$\mathcal{S} = \{ Y \succeq 0 : \langle Y, M_1 \rangle \geq 0, \langle Y, M_2 \rangle \geq 0 \}$

is an extreme ray of either

$\{ Y \succeq 0 : \langle Y, M_1 \rangle \geq 0 \}$

or

$\{ Y \succeq 0 : \langle Y, M_2 \rangle \geq 0 \}$.

$\Rightarrow \mathcal{S}$ is ROG.
Non-interacting inside \mathbb{S}_n^+ when:

- One LMI does not intersect \mathbb{S}_n^+, i.e. when $\pm M_i \succeq 0$.

Using \mathbb{S}-lemma, this is true when $\lambda (\pm M_1) - (\pm M_2) \succeq 0$ for some $\lambda \geq 0$.

In sum, non-interacting when $\alpha M_1 + \beta M_2 \succeq 0$ for some $(\alpha, \beta) \neq (0,0)$.
Non-interacting inside S^n_+ when:

- One LMI does not intersect S^n_+, i.e. when $\pm M_i \succeq 0$.
- $\langle \pm M_1, X \rangle \geq 0$ is a consequence of $\langle \pm M_2, X \rangle \geq 0$ for $X \succeq 0$.

C. Argue, F. Kılınç-Karzan (CMU)
Non-interacting inside \mathbb{S}_+^n when:

- One LMI does not intersect \mathbb{S}_+^n, i.e. when $\pm M_i \succeq 0$.
- $\langle \pm M_1, X \rangle \geq 0$ is a consequence of $\langle \pm M_2, X \rangle \geq 0$ for $X \succeq 0$.
- Using S-lemma, this is true when $\lambda(\pm M_1) - (\pm M_2) \succeq 0$ for some $\lambda \geq 0$.
Geometry of \mathbb{S}_+^n – Non-interacting LMIs

Non-interacting inside \mathbb{S}_+^n when:

- One LMI does not intersect \mathbb{S}_+^n, i.e. when $\pm M_i \succeq 0$.
- $\langle \pm M_1, X \rangle \geq 0$ is a consequence of $\langle \pm M_2, X \rangle \geq 0$ for $X \succeq 0$.
- Using S-lemma, this is true when $\lambda(\pm M_1) - (\pm M_2) \succeq 0$ for some $\lambda \geq 0$.

In sum, non-interacting when $\alpha M_1 + \beta M_2 \succeq 0$ for some $(\alpha, \beta) \neq (0, 0)$.
Non-interacting LMIs yield ROG cones.

M_1, M_2 are non-interacting if $\langle \pm M_2, Y \rangle \geq 0$ along with $Y \succeq 0$ implies $\langle \pm M_1, Y \rangle \geq 0$.

Proposition 1

If $\alpha M_1 + \beta M_2 \succeq 0$ has a nontrivial solution, i.e. $(\alpha, \beta) \neq (0, 0)$ then S is ROG.
Question

In general, how do we show that a cone is ROG?
Question
In general, how do we show that a cone is ROG?

Show that \(Y \notin \text{Ext}(S) \) when:
- \(\text{rank}(Y) \geq 2 \).
Question

In general, how do we show that a cone is ROG?

Show that $Y \notin \text{Ext}({\mathcal{S}})$ when:

- $\text{rank}(Y) \geq 2$.
- $\langle Y, M_1 \rangle = \langle Y, M_2 \rangle = 0$.
Showing $Y \not\in \text{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?

Show that $Y \not\in \text{Ext}(\mathcal{S})$ when:

- $\text{rank}(Y) \geq 2$.
- $\langle Y, M_1 \rangle = \langle Y, M_2 \rangle = 0$.

Find $x \in \mathbb{R}^n$ such that $Y \pm xx^\top \in \mathcal{S}$.

For $Y - xx^\top \succeq 0$, need $x \in \text{Range}(Y)$. Since $\langle Y, M_i \rangle = 0$, need $0 = \langle xx^\top, M_i \rangle = x^\top M_i x$.

C. Argue, F. Kılıç-Karzan (CMU)
Showing $Y \notin \text{Ext}(S)$

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin \text{Ext}(S)$ when:

- $\text{rank}(Y) \geq 2$.
- $\langle Y, M_1 \rangle = \langle Y, M_2 \rangle = 0$.

Find $x \in \mathbb{R}^n$ such that $Y \pm xx^\top \in S$.

- For $Y - xx^\top \succeq 0$, need $x \in \text{Range}(Y)$.
Showing $Y \notin \text{Ext}(\mathcal{S})$

Question

In general, how do we show that a cone is ROG?

Show that $Y \notin \text{Ext}(\mathcal{S})$ when:

- $\text{rank}(Y) \geq 2$.
- $\langle Y, M_1 \rangle = \langle Y, M_2 \rangle = 0$.

Find $x \in \mathbb{R}^n$ such that $Y \pm xx^\top \in \mathcal{S}$.

- For $Y - xx^\top \succeq 0$, need $x \in \text{Range}(Y)$.
- Since $\langle Y, M_i \rangle = 0$, need $0 = \langle xx^\top, M_i \rangle = x^\top M_ix$.

Fix a candidate extreme ray Y. Define

$$\mathcal{N}_1 := \{ x \in \mathbb{R}^n : x^\top M_1 x = 0 \}.$$
$$\mathcal{N}_2 := \{ x \in \mathbb{R}^n : x^\top M_2 x = 0 \}.$$

When is $\text{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2 \neq \{0\}$?
Quadratic Forms

Start with $n = 3$.
Consider $Y \in S_+^3$, $\text{rank}(Y) = 2$.
Start with $n = 3$.
Consider $Y \in S_+^3$, $\text{rank}(Y) = 2$.
 - $\text{Range}(Y)$ is a plane.
Start with $n = 3$. Consider $Y \in S^3_+$, $\text{rank}(Y) = 2$.

- $	ext{Range}(Y)$ is a plane.
- If $\mathcal{N}_1 \cap \mathcal{N}_2 \subseteq \mathbb{R}^3$ contains a plane, then it intersects every plane nontrivially.
Start with $n = 3$. Consider $Y \in \mathbb{S}_+^3$, $\text{rank}(Y) = 2$.

- Range(Y) is a plane.
- If $\mathcal{N}_1 \cap \mathcal{N}_2 \subseteq \mathbb{R}^3$ contains a plane, then it intersects every plane nontrivially.

Observation

\mathcal{S} is ROG when $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane.
Quadratic Forms – $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

\[
\begin{align*}
\text{For any } (\alpha, \beta), \quad \mathcal{N}_{\alpha,\beta} := \{ x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0 \} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2.
\end{align*}
\]

In particular, $\mathcal{N}_{\alpha,\beta}$ contains a plane for all (α, β).

Answer

\star When $\text{rank}(\alpha M_1 + \beta M_2) \leq 2$ for all (α, β).
Quadratic Forms – $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane

Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- $\{x \in \mathbb{R}^3 : x^\top M x = 0\}$ contains a plane when $\text{rank}(M) \leq 2$ and M is indefinite.
Question

When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- \(\{ x \in \mathbb{R}^3 : x^\top M x = 0 \} \) contains a plane when \(\text{rank}(M) \leq 2 \) and \(M \) is indefinite.

- For any \((\alpha, \beta) \),

\[\mathcal{N}_{\alpha,\beta} := \{ x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0 \} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2. \]
Quadratic Forms – $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane

Question
When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- $\{x \in \mathbb{R}^3 : x^\top M x = 0\}$ contains a plane when $\text{rank}(M) \leq 2$ and M is indefinite.

- For any (α, β),

$$\mathcal{N}_{\alpha,\beta} := \{x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0\} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2.$$

In particular, $\mathcal{N}_{\alpha,\beta}$ contains a plane for all (α, β).
Question
When does $\mathcal{N}_1 \cap \mathcal{N}_2$ contain a plane?

- \(\{ x \in \mathbb{R}^3 : x^\top M x = 0 \} \) contains a plane when \(\text{rank}(M) \leq 2 \) and \(M \) is indefinite.
- For any \((\alpha, \beta) \),

\[
\mathcal{N}_{\alpha,\beta} := \{ x \in \mathbb{R}^3 : x^\top (\alpha M_1 + \beta M_2) x = 0 \} \supseteq \mathcal{N}_1 \cap \mathcal{N}_2.
\]

In particular, \(\mathcal{N}_{\alpha,\beta} \) contains a plane for all \((\alpha, \beta) \).

Answer*
When \(\text{rank}(\alpha M_1 + \beta M_2) \leq 2 \) for all \((\alpha, \beta) \).
Y is not an extreme ray when $\text{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2$ has a nonzero element.
Geometry of Quadratic Forms – Recap

- Y is not an extreme ray when $\text{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2$ has a nonzero element.
- In \mathbb{R}^3, if $\mathcal{N}_1 \cap \mathcal{N}_2$ contains a plane, no rank 2 extreme rays.
Geometry of Quadratic Forms – Recap

- Y is not an extreme ray when $\text{Range}(Y) \cap N_1 \cap N_2$ has a nonzero element.
- In \mathbb{R}^3, if $N_1 \cap N_2$ contains a plane, no rank 2 extreme rays.
- $N_1 \cap N_2$ contains a plane when $\text{rank}(\alpha M_1 + \beta M_2) \leq 2$ for all α, β.
Y is not an extreme ray when \(\text{Range}(Y) \cap \mathcal{N}_1 \cap \mathcal{N}_2 \) has a nonzero element.

In \(\mathbb{R}^3 \), if \(\mathcal{N}_1 \cap \mathcal{N}_2 \) contains a plane, no rank 2 extreme rays.

\(\mathcal{N}_1 \cap \mathcal{N}_2 \) contains a plane when \(\text{rank}(\alpha M_1 + \beta M_2) \leq 2 \) for all \(\alpha, \beta \).

Proposition 2

\(S \) is ROG when \(\text{rank}(\alpha M_1 + \beta M_2) \leq 2 \) for all \((\alpha, \beta) \), \(\text{Span}\{\text{Range}(M_1) \cup \text{Range}(M_2)\} \) has dimension 3, and \(\alpha M_1 + \beta M_2 \succeq 0 \) has only the trivial solution \((\alpha, \beta) = (0, 0) \).
Main Result

Theorem 3 (A, Kılınç-Karzan, '17)

\[\{ Y \succeq 0 : \langle M_1, Y \rangle \succeq 0, \langle M_2, Y \rangle \succeq 0 \} \text{ is ROG iff one of the following holds} \]

(i) \(\alpha M_1 + \beta M_2 \succeq 0 \) for some \((\alpha, \beta) \neq (0, 0) \).

(ii) \(\text{rank}(\alpha M_1 + \beta M_2) \leq 2 \) for all \((\alpha, \beta) \) and \(\text{Span}\{\text{Range}(M_1) \cup \text{Range}(M_2)\} \) has dimension 3.
Proving Necessity (Sketch)

First consider the case of \mathbb{S}^3. Suppose that:

(i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.

(ii) $\text{rank}(aM_1 + bM_2) \geq 3$ for some (a, b).
Proving Necessity (Sketch)

First consider the case of S^3.

Suppose that:

(i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.

(ii) \(\text{rank}(aM_1 + bM_2) \geq 3\) for some (a, b).

Need to construct an extreme ray Y of rank 2.
First consider the case of S^3. Suppose that:

(i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.

(ii) $\text{rank}(a M_1 + b M_2) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\text{rank}(a M_1 + b M_2) = 3$ implies that $\mathcal{N}_1 \cap \mathcal{N}_2$ is “sparse.”
First consider the case of S^3. Suppose that:

(i) $\alpha M_1 + \beta M_2 \not\succeq 0$ for any $(\alpha, \beta) \neq (0, 0)$.

(ii) $\text{rank}(aM_1 + bM_2) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\text{rank}(aM_1 + bM_2) = 3$ implies that $\mathcal{N}_1 \cap \mathcal{N}_2$ is “sparse.”
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_1 \cap \mathcal{N}_2$.
First consider the case of \mathbb{S}^3.
Suppose that:

(i) $\alpha M_1 + \beta M_2 \not\preceq 0$ for any $(\alpha, \beta) \neq (0, 0)$.
(ii) $\text{rank}(a M_1 + b M_2) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\text{rank}(a M_1 + b M_2) = 3$ implies that $N_1 \cap N_2$ is “sparse.”
- Get a vector z that is not spanned by any two vectors of $N_1 \cap N_2$.
- Use infeasibility of $\alpha M_1 + \beta M_2 \succeq 0$ for $(\alpha, \beta) \neq (0, 0)$ to get w such that $Y = zz^T + ww^T$ is tight for both LMI's ($w \neq \lambda z$ for $\lambda \in \mathbb{R}$).
First consider the case of \mathbb{S}^3.
Suppose that:

(i) $\alpha M_1 + \beta M_2 \nless 0$ for any $(\alpha, \beta) \neq (0, 0)$.

(ii) $\text{rank}(aM_1 + bM_2) \geq 3$ for some (a, b).

Need to construct an extreme ray Y of rank 2.

- $\text{rank}(aM_1 + bM_2) = 3$ implies that $\mathcal{N}_1 \cap \mathcal{N}_2$ is “sparse.”
- Get a vector z that is not spanned by any two vectors of $\mathcal{N}_1 \cap \mathcal{N}_2$.
- Use infeasibility of $\alpha M_1 + \beta M_2 \succeq 0$ for $(\alpha, \beta) \neq (0, 0)$ to get w such that $Y = zz^T + ww^T$ is tight for both LMIs ($w \neq \lambda z$ for $\lambda \in \mathbb{R}$).

We reduce the general case of \mathbb{S}^n to the case of \mathbb{S}^3.
Extensions/Questions

- Necessary and sufficient conditions for more than 2 LMIs.
- Use results to analyze conic constraints.
 - Alternate analysis of Burer’s work on extensions of the Trust Region Subproblem.
 - Necessary and sufficient conditions for more general conic constraints.
Thank you!
cargue@andrew.cmu.edu
Further Reading

A Gentle Geometric Introduction to Copositive Optimization.
Mathematical Programming, June 2015, Volume 151, Issue 1, pp 89-116.

Roland Hildebrand (2016).
Spectrahedral Cones Generated by Rank-1 Matrices

Grigoriy Blekherman et al. (2016).
Do Sums of Squares Dream of Free Resolutions?